Do you want to publish a course? Click here

Holographically-controlled random numbers from entangled twisted photons

163   0   0.0 ( 0 )
 Added by Michael de Oliveira
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a quantum random number generator (QRNG) based on the random outcomes inherent in projective measurements on a superposition of quantum states of light. Firstly, we use multiplexed holograms encoded on a spatial light modulator to spatially map down-converted photons onto a superposition of optical paths. This gives us full digital control of the mapping process which we can tailor to achieve any desired probability distribution. More importantly, we use this method to account for any bias present within our transmission and detection system, forgoing the need for time-consuming and inefficient unbiasing algorithms. Our QRNG achieved a min-entropy of $text{H}_{text{min}}=0.9991pm0.0003$ bits per photon and passed the NIST statistical test suite. Furthermore, we extend our approach to realise a QRNG based on photons entangled in their orbital angular momentum (OAM) degree of freedom. This combination of digital holograms and projective measurements on arbitrary OAM combinations allowed us to generate random numbers with arbitrary distributions, in effect tailoring the systems entropy while maintaining the inherent quantum irreproducibility. Such techniques allow access to the higher-dimensional OAM Hilbert space, opening up an avenue for generating multiple random bits per photon.



rate research

Read More

Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined.
68 - C. Altuzarra , A. Lyons , G. Yuan 2018
Plasmonics and metamaterials have recently been shown to allow the control and interaction with non-classical states of light, a rather counterintuitive finding given the high losses typically encountered in these systems. Here, we demonstrate a range of functionalities that are allowed with correlated and entangled photons that are used to illuminate multiple, overlaid patterns on plasmonic metasurfaces. Correlated photons allow to nonlocally determine the pattern that is imaged or, alternatively to un-scramble an image that is otherwise blurred. Entangled photons allow a more important functionality whereby the images imprinted on the metasurface are individually visible only when illuminated with one of the entangled photons. Correlated single photon imaging of functional metasurfaces could therefore promise advances towards the use of nanostructured subwavelength thin devices in quantum information protocols.
Entangled two-photon absorption spectroscopy (TPA) has been widely recognized as a powerful tool for revealing relevant information about the structure of complex molecular systems. However, to date, the experimental implementation of this technique has remained elusive, mainly because of two major difficulties. First, the need to perform multiple experiments with two-photon states bearing different temporal correlations, which translates in the necessity to have at the experimenters disposal tens, if not hundreds, of sources of entangled photons. Second, the need to have emph{a priori} knowledge of the absorbing mediums lowest-lying intermediate energy level. In this work, we put forward a simple experimental scheme that successfully overcomes these two limitations. By making use of a temperature-controlled entangled-photon source, which allows the tuning of the central frequencies of the absorbed photons, we show that the TPA signal, measured as a function of the temperature of the nonlinear crystal that generates the paired photons, and a controllable delay between them, carries all information about the electronic level structure of the absorbing medium, which can be revealed by a simple Fourier transformation.
342 - Paul G. Kwiat 1998
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level of entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-$sigma$ violation of Bells inequalities in less than three minutes.
We propose a novel quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We show that when a dynamical quantum system interacts with an external field, the phase information is imprinted in the state of the field in a detectable way. The contribution to the signal from photons that interact with the sample scales as $propto I_{p}^{1/2}$, where $I_{p}$ is the source intensity, compared to $propto I_{p}$ of classical diffraction. This makes imaging with weak-field possible, avoiding damage to delicate samples. A Schmidt decomposition of the state of the field can be used for image enhancement by reweighting the Schmidt modes contributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا