Here, we consider an SIS epidemic model where the individuals are distributed on several distinct patches. We construct a stochastic model and then prove that it converges to a deterministic model as the total population size tends to infinity. Furthermore, we show the existence and the global stability of a unique endemic equilibrium provided that the migration rates of susceptible and infectious individuals are equal. Finally, we compare the equilibra with those of the homogeneous model, and with those of isolated patches.