No Arabic abstract
Solicited by the Small Bodies Assessment Group, we recommend a balanced program of telescopic observation (ground-based, airborne, and space-based), laboratory studies, theoretical research and missions to Main Belt Asteroids utilizing the full spectral range from ultraviolet to far-infrared to investigate these outstanding fundamental questions in the next decade.
The study of comets affords a unique window into the birth, infancy, and subsequent history of the solar system. There is strong evidence that comets incorporated pristine interstellar material as well as processed nebular matter, providing insights into the composition and prevailing conditions over wide swaths of the solar nebula at the time of planet formation. Dynamically new Oort cloud comets harbor primitive ices that have been stored thousands of astronomical units from the Sun and have suffered minimal thermal or radiative processing since their emplacement ~4.5 Gyr ago. Periodic, more dynamically evolved comets such as the Halley-type and Jupiter-family comets reveal the effects of lives spent over a range of heliocentric distances, including perihelion passages into the very inner solar system. Systematically characterizing the information imprinted in the native ice compositions of these objects is critical to understanding the formation and evolution of the solar system, the presence of organic matter and water on the terrestrial planets, the chemistry present in protoplanetary disks around other stars, and the nature of interstellar interlopers such as 2I/Borisov. Although comet rendezvous and sample return missions can provide remarkable insights into the properties of a few short-period comets, the on-sky capacity necessary to perform population-level comet studies while simultaneously remaining sensitive to the paradigm-challenging science that individual comets can reveal can only be provided by remote sensing observations. Here we report the state-of-the-art in ground- and space-based remote sensing of cometary volatiles, review the remarkable progress of the previous decade, articulate the pressing questions that ground- and space-based work will address over the next ten years, and advocate for the technology and resources necessary to realize these aspirations.
As an end-member of terrestrial planet formation, Mercury holds unique clues about the original distribution of elements in the earliest stages of solar system development and how planets and exoplanets form and evolve in close proximity to their host stars. This Mercury Lander mission concept enables in situ surface measurements that address several fundamental science questions raised by MESSENGERs pioneering exploration of Mercury. Such measurements are needed to understand Mercurys unique mineralogy and geochemistry; to characterize the proportionally massive cores structure; to measure the planets active and ancient magnetic fields at the surface; to investigate the processes that alter the surface and produce the exosphere; and to provide ground truth for current and future remote datasets. NASAs Planetary Mission Concept Studies program awarded this study to evaluate the feasibility of accomplishing transformative science through a New-Frontiers-class, landed mission to Mercury in the next decade. The resulting mission concept achieves one full Mercury year (~88 Earth days) of surface operations with an ambitious, high-heritage, landed science payload, corresponding well with the New Frontiers mission framework. The 11-instrument science payload is delivered to a landing site within Mercurys widely distributed low-reflectance material, and addresses science goals and objectives encompassing geochemistry, geophysics, the Mercury space environment, and surface geology. This mission concept is meant to be representative of any scientific landed mission to Mercury; alternate payload implementations and landing locations would be viable and compelling for a future landed Mercury mission.
This whitepaper identifies important science questions that can be answered through exploration of the Jupiter System, with emphasis on the questions that can be addressed by the Europa Clipper Mission. We advocate for adding Jupiter System Science to the mission after launch when expanding the scientific scope will not affect the development cost.
Over the past decade, research in resolved stellar populations has made great strides in exploring the nature of dark matter, in unraveling the star formation, chemical enrichment, and dynamical histories of the Milky Way and nearby galaxies, and in probing fundamental physics from general relativity to the structure of stars. Large surveys have been particularly important to the biggest of these discoveries. In the coming decade, current and planned surveys will push these research areas still further through a large variety of discovery spaces, giving us unprecedented views into the low surface brightness Universe, the high surface brightness Universe, the 3D motions of stars, the time domain, and the chemical abundances of stellar populations. These discovery spaces will be opened by a diverse range of facilities, including the continuing Gaia mission, imaging machines like LSST and WFIRST, massively multiplexed spectroscopic platforms like DESI, Subaru-PFS, and MSE, and telescopes with high sensitivity and spatial resolution like JWST, the ELTs, and LUVOIR. We do not know which of these facilities will prove most critical for resolved stellar populations research in the next decade. We can predict, however, that their chance of success will be maximized by granting use of the data to broad communities, that many scientific discoveries will draw on a combination of data from them, and that advances in computing will enable increasingly sophisticated analyses of the large and complex datasets that they will produce. We recommend that Astro2020 1) acknowledge the critical role that data archives will play for stellar populations and other science in the next decade, 2) recognize the opportunity that advances in computing will bring for survey data analysis, and 3) consider investments in Science Platform technology to bring these opportunities to fruition.
This review paper discusses the science of astrometric catalogs, their current applications and future prospects for making progress in fundamental astronomy, astrophysics and gravitational physics. We discuss the concept of fundamental catalogs, their practical realizations, and future prospects. Particular attention is paid to the astrophysical implementations of the catalogs such as the measurement of the Oort constants, the secular aberration and parallax, and asteroseismology. We also consider the use of the fundamental catalogs in gravitational physics for testing general theory of relativity and detection of ultra-long gravitational waves of cosmological origin.