The development of an implicit full f method for electromagnetic particle simulations of Alfven waves and energetic particle physics


Abstract in English

In this work, an implicit scheme for particle-in-cell/Fourier electromagnetic simulations is developed and applied to studies of Alfven waves in one dimension and three-dimensional tokamak plasmas. An analytical treatment is introduced to achieve efficient convergence of the iterative solution of the implicit field-particle system. First, its application to the one-dimensional uniform plasma demonstrates its applicability in a broad range of $beta/m_e$ values. Second, toroidicity induced Alfven eigenmodes (TAE) are simulated in a three-dimensional axisymmetric tokamak plasma, using the widely studied case defined by the International Tokamak Physics Activity (ITPA) Energetic Particle (EP) Topical Group. The real frequency and the growth (or damping) rate of the TAE with (or without) EPs agree with previous results reasonably well. The full f electromagnetic particle scheme established in this work provides a possible natural choice for EP transport studies where large profile variation and arbitrary particle distribution functions need to be treated in kinetic simulations.

Download