Do you want to publish a course? Click here

Modular symmetry by orbifolding magnetized $T^2times T^2$: realization of double cover of $Gamma_N$

71   0   0.0 ( 0 )
 Added by Shota Kikuchi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the modular symmetry of zero-modes on $T_1^2 times T_2^2$ and orbifold compactifications with magnetic fluxes, $M_1,M_2$, where modulus parameters are identified. This identification breaks the modular symmetry of $T^2_1 times T^2_2$, $SL(2,mathbb{Z})_1 times SL(2,mathbb{Z})_2$ to $SL(2,mathbb{Z})equivGamma$. Each of the wavefunctions on $T^2_1 times T^2_2$ and orbifolds behaves as the modular forms of weight 1 for the principal congruence subgroup $Gamma$($N$), $N$ being 2 times the least common multiple of $M_1$ and $M_2$. Then, zero-modes transform each other under the modular symmetry as multiplets of double covering groups of $Gamma_N$ such as the double cover of $S_4$.



rate research

Read More

We discuss an effective way for analyzing the system on the magnetized twisted orbifolds in operator formalism, especially in the complicated cases $T^{2}/Z_{3}$, $T^{2}/Z_{4}$ and $T^{2}/Z_{6}$. We can obtain the exact and analytical results which can be applicable for any larger values of the quantized magnetic flux M, and show that the (non-diagonalized) kinetic terms are generated via our formalism and the number of the surviving physical states are calculable in a rigorous manner by simply following usual procedures in linear algebra in any case. Our approach is very powerful when we try to examine properties of the physical states on (complicated) magnetized orbifolds $T^{2}/Z_{3}$, $T^{2}/Z_{4}$, $T^{2}/Z_{6}$ (and would be in other cases on higher-dimensional torus) and could be an essential tool for actual realistic model construction based on these geometries.
We study modular transformation of holomorphic Yukawa couplings in magnetized D-brane models. It is found that their products are modular forms, which are non-trivial representations of finite modular subgroups, e.g. $S_3$, $S_4$, $Delta(96)$ and $Delta(384)$.
We show that the Ocneanu algebra of quantum symmetries, for an ADE diagram (or for higher Coxeter-Dynkin systems, like the Di Francesco - Zuber system) is, in most cases, deduced from the structure of the modular T matrix in the A series. We recover in this way the (known) quantum symmetries of su(2) diagrams and illustrate our method by studying those associated with the three genuine exceptional diagrams of type su(3), namely E5, E9 and E21. This also provides the shortest way to the determination of twisted partition functions in boundary conformal field theory with defect lines.
We propose matter wavefunctions on resolutions of $T^2/mathbb{Z}_N$ singularities with constant magnetic fluxes. In the blow-down limit, the obtained wavefunctions of chiral zero-modes result in those on the magnetized $T^2/mathbb{Z}_N$ orbifold models, but the wavefunctions of $mathbb{Z}_N$-invariant zero-modes receive the blow-up effects around fixed points of $T^2/mathbb{Z}_N$ orbifolds. Such blow-up effects change the selection rules and Yukawa couplings among the chiral zero-modes as well as the modular symmetry, in contrast to those on the magnetized $T^2/mathbb{Z}_N$ orbifold models.
129 - Miao He , Yi-hong Gao 2019
We propose a symmetry of $Tbar T$ deformed 2D CFT, which preserves the trace relation. The deformed conformal killing equation is obtained. Once we consider the background metric runs with the deformation parameter $mu$, the deformation contributes an additional term in conformal killing equation, which plays the role of renormalization group flow of metric. The conformal symmetry coincides with the fixed point. On the gravity side, this deformed conformal killing equation can be described by a new boundary condition of AdS$_3$. In addition, based on the deformed conformal killing equation, we derive that the stress tensor of the deformed CFT equals to Brown-Yorks quasilocal stress tensor on a finite boundary with a counterterm. For a specific example, BTZ black hole, we get $Tbar T$ deformed conformal killing vectors and the associated conserved charges are also studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا