Do you want to publish a course? Click here

Measurement on the cosmic curvature using the Gaussian process method

296   0   0.0 ( 0 )
 Added by Yungui Gong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inflation predicts that the Universe is spatially flat. The Planck 2018 measurements of the cosmic microwave background anisotropy favour a spatially closed universe at more than 2$sigma$ confidence level. We use model independent methods to study the issue of cosmic curvature. The method reconstructs the Hubble parameter $H(z)$ from cosmic chronometers data with the Gaussian process method. The distance modulus is then calculated with the reconstructed function $H(z)$ and fitted by type Ia supernovae data. Combining the cosmic chronometers and type Ia supernovae data, we obtain $Omega_{k0}h^2=0.102pm 0.066$ which is consistent with a spatially flat universe at the 2$sigma$ confidence level. By adding the redshift space distortions data to the type Ia supernovae data with a proposed novel model independent method, we obtain $Omega_{k0}h^2=0.117^{+0.058}_{-0.045}$ and no deviation from $Lambda$CDM model is found.



rate research

Read More

The question of whether Cosmic Microwave Background (CMB) temperature and polarization data from Planck favor a spatially closed Universe with curvature parameter $Omega_K<0$ has been the subject of recent intense discussions. Attempts to break the geometrical degeneracy combining Planck data with external datasets such as Baryon Acoustic Oscillation (BAO) measurements all point towards a spatially flat Universe, at the cost of significant tensions with Planck, which make the resulting dataset combination problematic. Settling this issue requires identifying a dataset which can break the geometrical degeneracy while not incurring in these tensions. We argue that cosmic chronometers (CC), measurements of the expansion rate $H(z)$ from the relative ages of massive early-type passively evolving galaxies, are the dataset we are after. Furthermore, CC come with the additional advantage of being virtually free of cosmological model assumptions. Combining Planck 2018 CMB temperature and polarization data with the latest CC measurements, we break the geometrical degeneracy and find $Omega_K=-0.0054 pm 0.0055$, consistent with a spatially flat Universe and competitive with the Planck+BAO constraint. Our results are stable against minimal parameter space extensions and CC systematics, and we find no substantial tension between Planck and CC data within a non-flat Universe, making the resulting combination reliable. Our results allow us to assert with confidence that the Universe is spatially flat to the ${cal O}(10^{-2})$ level, a finding which might possibly settle the ongoing spatial curvature debate, and lends even more support to the already very successful inflationary paradigm.
We study observational constraints on the cosmographic functions up to the fourth derivative of the scale factor with respect to cosmic time, i.e., the so-called snap function, using the non-parametric method of Gaussian Processes. As observational data we use the Hubble parameter data. Also we use mock data sets to estimate the future forecast and study the performance of this type of data to constrain cosmographic functions. The combination between a non-parametric method and the Hubble parameter data is investigated as a strategy to reconstruct cosmographic functions. In addition, our results are quite general because they are not restricted to a specific type of functional dependency of the Hubble parameter. We investigate some advantages of using cosmographic functions instead of cosmographic series, since the former are general definitions free of approximations. In general, our results do not deviate significantly from $Lambda CDM$. We determine a transition redshift $z_{tr}=0.637^{+0.165}_{-0.175}$ and $H_{0}=69.45 pm 4.34$. Also assuming priors for the Hubble constant we obtain $z_{tr}=0.670^{+0.210}_{-0.120}$ with $H_{0}=67.44$ (Planck) and $z_{tr}=0.710^{+0.159}_{-0.111}$ with $H_{0}=74.03$(SH0ES). Our main results are summarized in table 2.
The production rate of primordial black holes is often calculated by considering a nearly Gaussian distribution of cosmological perturbations, and assuming that black holes will form in regions where the amplitude of such perturbations exceeds a certain threshold. A threshold $zeta_{rm th}$ for the curvature perturbation is somewhat inappropriate for this purpose, because it depends significantly on environmental effects, not essential to the local dynamics. By contrast, a threshold $delta_{rm th}$ for the density perturbation at horizon crossing seems to provide a more robust criterion. On the other hand, the density perturbation is known to be bounded above by a maximum limit $delta_{rm max}$, and given that $delta_{rm th}$ is comparable to $delta_{rm max}$, the density perturbation will be far from Gaussian near or above the threshold. In this paper, we provide a new plausible estimate for the primordial black hole abundance based on peak theory. In our approach, we assume that the curvature perturbation is given as a random Gaussian field with the power spectrum characterized by a single scale, while an optimized criterion for PBH formation is imposed, based on the locally averaged density perturbation. Both variables are related by the full nonlinear expression derived in the long-wavelength approximation of general relativity. We do not introduce a window function, and the scale of the inhomogeneity is introduced as a random variable in the peak theory. We find that the mass spectrum is shifted to larger mass scales by one order of magnitude or so, compared to a conventional calculation. The abundance of PBHs becomes significantly larger than the conventional one, by many orders of magnitude, mainly due to the optimized criterion for PBH formation and the removal of the suppresion associated with a window function.
The concordance of the $Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter $Omega_K<0$. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, $P(k)$, from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find $Omega_K=0.0023 pm 0.0028$. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit $chi^2$ suggests a similar level of tension between Planck and $P(k)$ under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.
This paper aims to put constraints on the transition redshift $z_t$, which determines the onset of cosmic acceleration, in cosmological-model independent frameworks. In order to do that, we use the non-parametric Gaussian Process method with $H(z)$ and SNe Ia data. The deceleration parameter reconstruction from $H(z)$ data yields $z_t=0.59^{+0.12}_{-0.11}$. The reconstruction from SNe Ia data assumes spatial flatness and yields $z_t=0.683^{+0.11}_{-0.082}$. These results were found with a Gaussian kernel and we show that they are consistent with two other kernel choices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا