Do you want to publish a course? Click here

The compressible Euler equations in a physical vacuum: a comprehensive Eulerian approach

97   0   0.0 ( 0 )
 Added by Mihaela Ifrim
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This article is concerned with the local well-posedness problem for the compressible Euler equations in gas dynamics. For this system we consider the free boundary problem which corresponds to a physical vacuum. Despite the clear physical interest in this system, the prior work on this problemis limited to Lagrangian coordinates, in high regularity spaces. Instead, the objective of the present work is to provide a new, fully Eulerian approach to this problem, which provides a complete, Hadamard style well-posedness theory for this problem in low regularity Sobolev spaces. In particular we give new proofs for both existence, uniqueness, and continuous dependence on the data with sharp, scale invariant energy estimates, and continuation criterion.



rate research

Read More

241 - Chengchun Hao 2013
In this paper, we establish a priori estimates for the three-dimensional compressible Euler equations with moving physical vacuum boundary, the $gamma$-gas law equation of state for $gamma=2$ and the general initial density $ri in H^5$. Because of the degeneracy of the initial density, we investigate the estimates of the horizontal spatial and time derivatives and then obtain the estimates of the normal or full derivatives through the elliptic-type estimates. We derive a mixed space-time interpolation inequality which play a vital role in our energy estimates and obtain some extra estimates for the space-time derivatives of the velocity in $L^3$.
Global existence for the nonisentropic compressible Euler equations with vacuum boundary for all adiabatic constants $gamma > 1$ is shown through perturbations around a rich class of background nonisentropic affine motions. The notable feature of the nonisentropic motion lies in the presence of non-constant entropies, and it brings a new mathematical challenge to the stability analysis of nonisentropic affine motions. In particular, the estimation of the curl terms requires a careful use of algebraic, nonlinear structure of the pressure. With suitable regularity of the underlying affine entropy, we are able to adapt the weighted energy method developed for the isentropic Euler by Hadv{z}ic and Jang to the nonisentropic problem. For large $gamma$ values, inspired by Shkoller and Sideris, we use time-dependent weights that allow some of the top-order norms to potentially grow as the time variable tends to infinity. We also exploit coercivity estimates here via the fundamental theorem of calculus in time variable for norms which are not top-order.
In 2000 Constantin showed that the incompressible Euler equations can be written in an Eulerian-Lagrangian form which involves the back-to-labels map (the inverse of the trajectory map for each fixed time). In the same paper a local existence result is proved in certain Holder spaces $C^{1,mu}$. We review the Eulerian-Lagrangian formulation of the equations and prove that given initial data in $H^s$ for $ngeq2$ and $s>frac{n}{2}+1$, a unique local-in-time solution exists on the $n$-torus that is continuous into $H^s$ and $C^1$ into $H^{s-1}$. These solutions automatically have $C^1$ trajectories. The proof here is direct and does not appeal to results already known about the classical formulation. Moreover, these solutions are regular enough that the classical and Eulerian-Lagrangian formulations are equivalent, therefore what we present amounts to an alternative approach to some of the standard theory.
In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the the velocity is in $L^1_t Lip$ and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors corresponding to the non relativistic problem. All our results are valid for a general equation of state $p(varrho)= varrho^gamma$, $gamma > 1$.
We consider the isothermal Euler system with damping. We rigorously show the convergence of Barenblatt solutions towards a limit Gaussian profile in the isothermal limit $gamma$ $rightarrow$ 1, and we explicitly compute the propagation and the behavior of Gaussian initial data. We then show the weak L 1 convergence of the density as well as the asymptotic behavior of its first and second moments. Contents 1. Introduction 1 2. Assumptions and main results 3 3. The limit $gamma$ $rightarrow$ 1 of Barenblatts solutions 6 4. Gaussian solutions 9 5. Evolution of certain quantities 10 6. Convergence 15 7. Conclusion 17 References 17
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا