Do you want to publish a course? Click here

Quarkonium TMD fragmentation functions in NRQCD

189   0   0.0 ( 0 )
 Added by Miguel Echevarria
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the transverse-momentum spectrum of quarkonium production from single light-parton fragmentation mechanism. In the case of semi-inclusive deep inelastic scattering, we observe that there are two possible initiating processes, namely photon-gluon fusion and light-quark fragmentation. For the second case we derive the factorization theorem, which involves a new hadronic quantity: the quarkonium transverse-momentum-dependent fragmentation functions in NRQCD. We calculate their matching onto the non-perturbative long distance matrix elements at the lowest order in the strong-coupling constant (${mathcal O}(alpha_s^2)$). Focusing on the case of the electron-ion collider, we make a comparative phenomenological study of the two production mechanisms and find the regions of the phase space where one is dominant over the other.



rate research

Read More

141 - Gouranga C. Nayak 2005
We discuss factorization in heavy quarkonium production in high energy collisions using NRQCD. Infrared divergences at NNLO are not matched by conventional NRQCD matrix elements. However, we show that gauge invariance and factorization require that conventional NRQCD production matrix elements be modified to include Wilson lines or non-abelian gauge links. With this modification NRQCD factorization for heavy quarkonium production is restored at NNLO.
We discuss heavy quarkonium production through parton fragmentation, including a review of arguments for the factorization of high-p_T particles into fragmentation functions for hadronic initial states. We investigate the further factorization of fragmentation functions in the NRQCD formalism, and argue that this requires a modification of NRQCD octet production matrix elements to include nonabelian phases, which makes them gauge invariant. We describe the calculation of uncanceled infrared divergences in fragmentation functions that must be factorized at NNLO, and verify that they are absorbed into the new, gauge invariant matrix elements.
We compute the unpolarized quark and gluon transverse-momentum dependent fragmentation functions (TMDFFs) at next-to-next-to-next-to-leading order (N$^3$LO) in perturbative QCD. The calculation is based on a relation between the TMDFF and the limit of the semi-inclusive deep inelastic scattering cross section where all final-state radiation becomes collinear to the detected hadron. The required cross section is obtained by analytically continuing our recent computation of the Drell-Yan and Higgs boson production cross section at N$^3$LO expanded around the limit of all final-state radiation becoming collinear to one of the initial states. Our results agree with a recent independent calculation by Luo et al.
We present a simple method to automatically evaluate arbitrary tree-level amplitudes involving the production or decay of a heavy quark pair QQbar in a generic {2S+1}L_J^[1,8] state, i.e., the short distance coefficients appearing in the NRQCD factorization formalism. Our approach is based on extracting the relevant contributions from the open heavy quark-antiquark amplitudes through an expansion with respect to the quark-antiquark relative momentum and the application of suitable color and spin projectors. To illustrate the capabilities of the method and its implementation in MadGraph a few applications to quarkonium collider phenomenology are presented.
In the paper, we calculate the fragmentation functions for a quark to fragment into a spin-singlet quarkonium, where the flavor of the initial quark is different from that of the constituent quark in the quarkonium. The ultraviolet divergences in the phase space integral are removed through the operator renormalization under the modified minimal subtraction scheme. The fragmentation function $D_{q to eta_Q}(z,mu_F)$ is expressed as a two-dimensional integral. Numerical results for the fragmentation functions of a light quark or a bottom quark to fragment into the $eta_c$ are presented. As an application of those fragmentation functions, we study the processes $Z to eta_c+qbar{q}g(q=u,d,s)$ and $Z to eta_c+bbar{b}g$ under the fragmentation and the direct nonrelativistic QCD approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا