Do you want to publish a course? Click here

International Coordination of Multi-Messenger Transient Observations in the 2020s and Beyond: Kavli-IAU White Paper

99   0   0.0 ( 0 )
 Added by Patricia Whitelock
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This White Paper summarizes the discussions from a five-day workshop, involving 50 people from 18 countries, held in Cape Town, South Africa in February 2020. Convened by the International Astronomical Unions Executive Committee Working Group on Global Coordination of Ground and Space Astrophysics and sponsored by the Kavli Foundation, we discussed existing and potential bottlenecks for transient and multi-messenger astronomy, identifying eight broad areas of concern. Some of these are very similar to the challenges faced by many astronomers engaging in international collaboration, for example, data access policies, funding, theoretical and computational resources and workforce equity. Others, including, alerts, telescope coordination and target-of-opportunity implementation, are strongly linked to the time domain and are particularly challenging as we respond to transients. To address these bottlenecks we offer thirty-five specific recommendations, some of which are simply starting points and require development. These recommendations are not only aimed at collaborative groups and individuals, but also at the various organizations who are essential to making transient collaborations efficient and effective: including the International Astronomical Union, observatories, projects, scientific journals and funding agencies. We hope those involved in transient research will find them constructive and use them to develop collaborations with greater impact and more inclusive teams.



rate research

Read More

This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-sharp imaging of celestial radio sources at the level of angular resolution down to (sub-) microarcseconds. THEZA focuses at millimetre and sub-millimetre wavelengths (frequencies above $sim$300~GHz), but allows for science operations at longer wavelengths too. The THEZA concept science rationale is focused on the physics of spacetime in the vicinity of supermassive black holes as the leading science driver. The main aim of the concept is to facilitate a major leap by providing researchers with orders of magnitude improvements in the resolution and dynamic range in direct imaging studies of the most exotic objects in the Universe, black holes. The concept will open up a sizeable range of hitherto unreachable parameters of observational astrophysics. It unifies two major lines of development of space-borne radio astronomy of the past decades: Space VLBI (Very Long Baseline Interferometry) and mm- and sub-mm astrophysical studies with single dish instruments. It also builds upon the recent success of the Earth-based Event Horizon Telescope (EHT) -- the first-ever direct image of a shadow of the super-massive black hole in the centre of the galaxy M87. As an amalgam of these three major areas of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality studies in the millimetre and sub-millimetre domain of the electromagnetic spectrum.
Asteroseismology is the only observational tool in astronomy that can probe the interiors of stars, and is a benchmark method for deriving fundamental properties of stars and exoplanets. Over the coming decade, space-based and ground-based observations will provide a several order of magnitude increase of solar-like oscillators, as well as a dramatic increase in the number and quality of classical pulsator observations, providing unprecedented possibilities to study stellar physics and galactic stellar populations. In this white paper, we describe key science questions and necessary facilities to continue the asteroseismology revolution into the 2020s.
The Wide-Field Infrared Survey Telescope (WFIRST) is expected to launch in the mid-2020s. With its wide-field near-infrared (NIR) camera, it will survey the sky to unprecedented detail. As part of normal operations and as the result of multiple expected dedicated surveys, WFIRST will produce several relatively wide-field (tens of square degrees) deep (limiting magnitude of 28 or fainter) fields. In particular, a planned supernova survey is expected to image 3 deep fields in the LSST footprint roughly every 5 days over 2 years. Stacking all data, this survey will produce, over all WFIRST supernova fields in the LSST footprint, ~12-25 deg^2 and ~5-15 deg^2 regions to depths of ~28 mag and ~29 mag, respectively. We suggest LSST undertake mini-surveys that will match the WFIRST cadence and simultaneously observe the supernova survey fields during the 2-year WFIRST supernova survey, achieving a stacked depth similar to that of the WFIRST data. We also suggest additional observations of these same regions throughout the LSST survey to get deep images earlier, have long-term monitoring in the fields, and produce deeper images overall. These fields will provide a legacy for cosmology, extragalactic, and transient/variable science.
Microlensing can access planet populations that no other method can probe: cold wide-orbit planets beyond the snow line, planets in both the Galactic bulge and disk, and free floating planets (FFPs). The demographics of each population will provide unique constraints on planet formation. Over the past 5 years, U.S. microlensing campaigns with Spitzer and UKIRT have provided a powerful complement to international ground-based microlensing surveys, with major breakthroughs in parallax measurements and probing new regions of the Galaxy. The scientific vitality of these projects has also promoted the development of the U.S. microlensing community. In the 2020s, the U.S. can continue to play a major role in ground-based microlensing by leveraging U.S. assets to complement ongoing ground-based international surveys. LSST and UKIRT microlensing surveys would probe vast regions of the Galaxy, where planets form under drastically different conditions. Moreover, while ground-based surveys will measure the planet mass-ratio function beyond the snow line, adaptive optics (AO) observations with ELTs would turn all of these mass ratios into masses and also distinguish between very wide-orbit planets and genuine FFPs. To the extent possible, cooperation of U.S. scientists with international surveys should also be encouraged and supported.
Advances in space weather science and small satellite (SmallSat) technology have proceeded in parallel over the past two decades, but better communication and coordination is needed among the respective worldwide communities contributing to this rapid progress. We identify six areas where improved international coordination is especially desirable, including: (1) orbital debris mitigation; (2) spectrum management; (3) export control regulations; (4) access to timely and low-cost launch opportunities; (5) inclusive data policies; and (6) education. We argue the need for internationally coordinated policies and programs to promote the use of SmallSats for space weather research and forecasting while realizing maximum scientific and technical advances through the integration of these two increasingly important endeavors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا