Do you want to publish a course? Click here

Li-rich K giants, dust excess, and binarity

79   0   0.0 ( 0 )
 Added by Alain Jorissen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of the Li-rich K giants is still highly debated. Here, we investigate the incidence of binarity among this family from a nine-year radial-velocity monitoring of a sample of 11 Li-rich K giants using the HERMES spectrograph attached to the 1.2m Mercator telescope. A sample of 13 non-Li-rich giants (8 of them being surrounded by dust according to IRAS, WISE, and ISO data) was monitored alongside. When compared to the binary frequency in a reference sample of 190 K giants (containing 17.4% of definite spectroscopic binaries -- SB -- and 6.3% of possible spectroscopic binaries -- SB?), the binary frequency appears normal among the Li-rich giants (2/11 definite binaries plus 2 possible binaries, or 18.2% SB + 18.2% SB?), after taking account of the small sample size through the hypergeometric probability distribution. Therefore, there appears to be no causal relationship between Li enrichment and binarity. Moreover, there is no correlation between Li enrichment and the presence of circumstellar dust, and the only correlation that could be found between Li enrichment and rapid rotation is that the most Li-enriched K giants appear to be fast-rotating stars. However, among the dusty K giants, the binary frequency is much higher (4/8 definite binaries plus 1 possible binary). The remaining 3 dusty K giants suffer from a radial-velocity jitter, as is expected for the most luminous K giants, which these are.



rate research

Read More

Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using IRAS data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from WISE. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. We have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by ~20 um (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, 12C/13C. IR excesses by 20 um, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the Li-enrichment mechanism may only occasionally produce dust, and an additional parameter (e.g., rotation) may control whether or not a shell is ejected.
Two Li-rich candidates, TYC 1338-1410-1 and TYC 2825-596-1, were observed with the new high-resolution echelle spectrograph, LAMOST/HRS. Based on the high-resolution and high-signal-to-noise ratio (SNR) spectra, we derived stellar parameters and abundances of 14 important elements for the two candidates. The stellar parameters and lithium abundances indicate that they are Li-rich K-type giants, and they have A(Li)$_mathrm{NLTE}$ of 1.77 and 2.91 dex, respectively. Our analysis suggests that TYC 1338-1410-1 is likely a red giant branch (RGB) star at the bump stage, while TYC 2825-596-1 is most likely a core helium-burning red clump (RC) star. The line profiles of both spectra indicate that the two Li-rich giants are slow rotators and do not show infrared (IR) excess. We conclude that engulfment is not the lithium enrichment mechanism for either star. The enriched lithium of TYC 1338-1410-1 could be created via Cameron-Fowler mechanism, while the lithium excess in TYC 2825-596-1 could be associated with either non-canonical mixing processes or He-flash.
We present a study of the evolutionary state of a few lithium-rich giant stars based on the Gaia DR2 parallaxes and photometry. We also investigate the chromospheric activity, the presence of a surface magnetic field, and the radial velocity for our sample stars. We analysed both archive and new data. We gathered archive spectra from several instruments, mainly ELODIE and NARVAL, and we added new data acquired with the spectrograph MUSICOS. We applied the Least-Squares Deconvolution technique to obtain Stokes V and Stokes I mean profiles to compute longitudinal magnetic field for a subset. Moreover, for the same subset, we analysed the Ca II H and K emission lines to calculate the S-index. We also derived atmospheric parameters and Li abundances for all eighteen stars of our sample. We found that stars previously classified as RGB may actually be at a different evolutionary state. Furthermore, we identified that most stars in our sample with detection of surface magnetic field show at least moderate rotation velocities, but nonetheless, we could not detect a magnetic field in two fast rotators. Due to our small sample of magnetic giants, it is difficult to determine if the presence of surface magnetic field and the Li-rich giant phenomena could be somehow linked. The large variation of the radial velocity of part of our sample indicates that some of them might have a binary companion, which may change the way we look at the Li problem in giant stars.
The discovery of Li-rich giant has cast a new challenge for the standard stellar evolution models, and to resolve this issue, the number of this type object has been rapidly increased because of the development of worldwide surveys these days. Taking advantage of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey, 44 newly Li-rich giants are reported, which are confirmed with high-resolution observations. Based on the high-resolution and high signal-to-noise spectra, we derived the atmospheric parameters and elemental abundances with the spectral synthesis method. We performed a detailed analysis of their evolutionary stages, infrared excess, projected rotational velocity (v sin i), and the stellar population. We find that (1) The Li-rich giants concentrate at the evolutionary status of the red giant branch bump, red clump, and asymptotic giant branch; (2) Three of them are fast rotators and none exhibit infrared excess. Our results imply that the origins of Li enrichment are most likely to be associated with the extra mixing in the stellar interior, and the external sources maybe only make a minor contribution. Moreover, various Li-rich episodes take place at different evolutionary stages.
We searched for a correlation between the two anomalous properties of K giants: Li enhancement and IR excess from an unbiased survey of a large sample of RGB stars. A sample of 2000 low-mass K giants with accurate astrometry from the Hipparcos catalog was chosen for which Li abundances have been determined from low-resolution spectra. Far-infrared data were collected from the $WISE$ and $IRAS$ catalogs. To probe the correlation between the two anomalies, we supplemented 15 Li-rich K giants discovered from this sample with 25 known Li-rich K giants from other studies. Dust shell evolutionary models and spectral energy distributions were constructed using the code DUSTY to estimate different dust shell properties, such as dust evolutionary time scales, dust temperatures, and mass-loss rates. Among 2000 K giants, we found about two dozen K giants with detectable far-IR excess, and surprisingly, none of them are Li-rich. Similarly, the 15 new Li-rich K giants that were identified from the same sample show no evidence of IR excess. Of the total 40 Li-rich K giants, only 7 show IR excess. Important is that K giants with Li enhancement and/or IR excess begin to appear only at the bump on the RGB. Results show that K giants with IR excess are very rare, similar to K giants with Li enhancement. This may be due to the rapid differential evolution of dust shell and Li depletion compared to RGB evolutionary time scales. We also infer from the results that during the bump evolution, giants probably undergo some internal changes, which are perhaps the cause of mass-loss and Li-enhancement events. However, the available observational results do not ascertain that these properties are correlated. That a few Li-rich giants have IR excess seems to be pure coincidence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا