Plasma mirrors as a path to the Schwinger limit


Abstract in English

Reaching light intensities above $10^{25}$ W/cm$^{2}$ and up to the Schwinger limit ($10^{29}$ W/cm$^{2}$) would enable testing decades-old fundamental predictions of Quantum Electrodynamics. A promising yet challenging approach to achieve such extreme fields consists in reflecting a high-power femtosecond laser pulse off a curved relativistic mirror. This enhances the intensity of the reflected beam by simultaneously compressing it in time down to the attosecond range, and focusing it to sub-micron focal spots. Here we show that such curved relativistic mirrors can be produced when an ultra-intense laser pulse ionizes a solid target and creates a dense plasma that specularly reflects the incident light. This is evidenced by measuring for the first time the temporal and spatial effects induced on the reflected beam by this so-called plasma mirror. The all-optical measurement technique demonstrated here will be instrumental for the use of relativistic plasma mirrors with the emerging generation of Petawatt lasers, which constitutes a viable experimental path to the Schwinger limit.

Download