Do you want to publish a course? Click here

PoCET: a Polynomial Chaos Expansion Toolbox for Matlab

218   0   0.0 ( 0 )
 Added by Felix Petzke
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce PoCET: a free and open-scource Polynomial Chaos Expansion Toolbox for Matlab, featuring the automatic generation of polynomial chaos expansion (PCE) for linear and nonlinear dynamic systems with time-invariant stochastic parameters or initial conditions, as well as several simulation tools. It offers a built-in handling of Gaussian, uniform, and beta probability density functions, projection and collocation-based calculation of PCE coefficients, and the calculation of stochastic moments from a PCE. Efficient algorithms for the calculation of the involved integrals have been designed in order to increase its applicability. PoCET comes with a variety of introductory and instructive examples. Throughout the paper we show how to perform a polynomial chaos expansion on a simple ordinary differential equation using PoCET, as well as how it can be used to solve the more complex task of optimal experimental design.



rate research

Read More

74 - P. den Boef , P. B. Cox , R. Toth 2021
This paper describes the LPVcore software package for MATLAB developed to model, simulate, estimate and control systems via linear parameter-varying (LPV) input-output (IO), state-space (SS) and linear fractional (LFR) representations. In the LPVcore toolbox, basis affine parameter-varying matrix functions are implemented to enable users to represent LPV systems in a global setting, i.e., for time-varying scheduling trajectories. This is a key difference compared to other software suites that use a grid or only LFR-based representations. The paper contains an overview of functions in the toolbox to simulate and identify IO, SS and LFR representations. Based on various prediction-error minimization methods, a comprehensive example is given on the identification of a DC motor with an unbalanced disc, demonstrating the capabilities of the toolbox. The software and examples are available on www.lpvcore.net.
137 - Zhanlin Liu , Youngjun Choe 2021
Polynomial chaos expansions (PCEs) have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs. PCEs for models with independent inputs have been extensively explored in the literature. Recently, different approaches have been proposed for models with dependent inputs to expand the use of PCEs to more real-world applications. Typical approaches include building PCEs based on the Gram-Schmidt algorithm or transforming the dependent inputs into independent inputs. However, the two approaches have their limitations regarding computational efficiency and additional assumptions about the input distributions, respectively. In this paper, we propose a data-driven approach to build sparse PCEs for models with dependent inputs. The proposed algorithm recursively constructs orthonormal polynomials using a set of monomials based on their correlations with the output. The proposed algorithm on building sparse PCEs not only reduces the number of minimally required observations but also improves the numerical stability and computational efficiency. Four numerical examples are implemented to validate the proposed algorithm.
A probabilistic performance-oriented controller design approach based on polynomial chaos expansion and optimization is proposed for flight dynamic systems. Unlike robust control techniques where uncertainties are conservatively handled, the proposed method aims at propagating uncertainties effectively and optimizing control parameters to satisfy the probabilistic requirements directly. To achieve this, the sensitivities of violation probabilities are evaluated by the expansion coefficients and the fourth moment method for reliability analysis, after which an optimization that minimizes failure probability under chance constraints is conducted. Afterward, a time-dependent polynomial chaos expansion is performed to validate the results. With this approach, the failure probability is reduced while guaranteeing the closed-loop performance, thus increasing the safety margin. Simulations are carried out on a longitudinal model subject to uncertain parameters to demonstrate the effectiveness of this approach.
State Space Models (SSM) is a MATLAB 7.0 software toolbox for doing time series analysis by state space methods. The software features fully interactive construction and combination of models, with support for univariate and multivariate models, complex time-varying (dynamic) models, non-Gaussian models, and various standard models such as ARIMA and structural time-series models. The software includes standard functions for Kalman filtering and smoothing, simulation smoothing, likelihood evaluation, parameter estimation, signal extraction and forecasting, with incorporation of exact initialization for filters and smoothers, and support for missing observations and multiple time series input with common analysis structure. The software also includes implementations of TRAMO model selection and Hillmer-Tiao decomposition for ARIMA models. The software will provide a general toolbox for doing time series analysis on the MATLAB platform, allowing users to take advantage of its readily available graph plotting and general matrix computation capabilities.
More attention is being paid for feature importance ranking (FIR), in particular when thousands of features can be extracted for intelligent diagnosis and personalized medicine. A large number of FIR approaches have been proposed, while few are integrated for comparison and real-life applications. In this study, a matlab toolbox is presented and a total of 30 algorithms are collected. Moreover, the toolbox is evaluated on a database of 163 ultrasound images. To each breast mass lesion, 15 features are extracted. To figure out the optimal subset of features for classification, all combinations of features are tested and linear support vector machine is used for the malignancy prediction of lesions annotated in ultrasound images. At last, the effectiveness of FIR is analyzed according to performance comparison. The toolbox is online (https://github.com/NicoYuCN/matFIR). In our future work, more FIR methods, feature selection methods and machine learning classifiers will be integrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا