No Arabic abstract
Optoelectronic oscillators have dominated the scene of microwave oscillators in the last few years thanks to their great performances regarding frequency stability and phase noise. However, miniaturization of such a device is an up to date challenge. Recently, devices based on phonon-photon interaction gather a lot of interest thanks to their extreme compactness and working frequency directly in the GHz. In this frame, a still missing element to obtain long-term frequency stability performances is an on-chip delay within the feedback loop. Here, we experimentally show filtering and slow propagation of 2 GHz acoustic waves on a Gallium Arsenide membrane heterogeneously integrated on silicon wafer. By engineering the dispersion of an acoustical waveguide, we evidence a group velocity below 1000 m/s for the mode able to propagate. Thus, an integrated delay implementation is at reach for potential improvement of opto-acoustic devices such as optomechanical oscillators or wireless applications.
We report direct visualization of gigahertz-frequency Lamb waves propagation in aluminum nitride phononic circuits by transmission-mode microwave impedance microscopy (TMIM). Consistent with the finite-element modeling, the acoustic eigenmodes in both a horn-shaped coupler and a sub-wavelength waveguide are revealed in the TMIM images. Using fast Fourier transform filtering, we quantitatively analyze the acoustic loss of individual Lamb modes along the waveguide and the power coupling coefficient between the waveguide and the parabolic couplers. Our work provides insightful information on the propagation, mode conversion, and attenuation of acoustic waves in piezoelectric nanostructures, which is highly desirable for designing and optimizing phononic devices for microwave signal processing and quantum information transduction.
The interaction of Love waves with square array of pillars deposited on a cavity defined in a 2D holey phononic crystal is numerically investigated using Finite Element Method. First, the existence of SH surface modes is demonstrated separately for phononic crystals that consist of square arrayed holes, or rectangular arrayed Ni pillars, respectively in, or on, a SiO2 film deposited on a ST-cut quartz substrate. The coupling between SH modes and torsional mode in pillars induces a transmission dip that occurs at a frequency located in the range of the band-gap of the holey phononic crystal. Second, a cavity is constructed by removing lines of holes in the holey phononic crystal and results in a transmission peak that matches the dip. The optimal geometrical parameters enable us to create a coupling of the cavity mode and the localized pillar mode by introducing lines of pillars into the cavity, which significantly improved the efficiency of the cavity without increasing the crystal size. The obtained results will pave the way to implement advanced designs of high-performance electroacoustic sensors based on coupling modes in phononic crystals.
We report a high Responsivity broad band photo-detector working in the wavelength range 400 nm to 1100 nm in a horizontal array of Si microlines (line width ~1 micron) fabricated on a Silicon-on-Insulator (SOI) wafer. The array was made using a combination of plasma etching, wet etching and electron beam lithography. It forms a partially suspended (nearly free) Silicon microstructure on SOI. The array detector under full illumination of the device shows a peak Responsivity of 18 A/W at 800 nm, at a bias of 1V which is more than an order of magnitude of the Responsivity in a commercial Si detector. In a broad band of 400 nm to 1000 nm the Responsivity of the detector is in excess of 10A/W. We found that the suspension of the microlines in the array is necessary to obtain such high Responsivity. The suspension isolates the microlines from the bulk of the wafer and inhibits carrier recombination by the underlying oxide layer leading to enhanced photo-response. This has been validated through simulation. By using focused illumination of selected parts of a single microline of the array, we could isolate the contributions of the different parts of the microline to the photo-current.
We demonstrate that photoemission properties of GaAs photocathodes (PCs) can be altered by surface acoustic waves (SAWs) generated on the PC surface due to dynamical piezoelectric fields of SAWs. Simulations with COMSOL indicate that electron effective lifetime in p-doped GaAs may increase by a factor of 10x to 20x. It implies a significant, by a factor of 2x to 3x, increase of quantum efficiency (QE) for GaAs PCs. Essential steps in device fabrication are demonstrated, including deposition of an additional layer of ZnO for piezoelectric effect enhancement, measurements of I-V characteristic of the SAW device, and ability to survive high-temperature annealing.
The rising need for hybrid physical platforms has triggered a renewed interest for the development of agile radio-frequency phononic circuits with complex functionalities. The combination of travelling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of elastic non-linearities induced travelling surface acoustic waves (SAW) interacting with a pair of otherwise linear micron-scale mechanical resonators. Reducing the resonator gap distance and increasing the SAW amplitude results in a frequency softening of the resonator pair response that lies outside the usual picture of geometrical Duffing non-linearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular polarization states. These results paves the way towards versatile high-frequency phononic-MEMS/NEMS circuits fitting both classical and quantum technologies.