No Arabic abstract
We designed and implemented a novel combination of a Sagnac-interferometer with a Mach-Zehnder interferometer for a source of polarization-entangled photons. The new versatile configuration does not require multi-wavelength polarization optics, yet it performs with a good polarization quality and phase-stability over a wide wavelength range. We demonstrate the interferometer using only standard commercial optics to experimentally realize the pulsed generation of polarization-entangled photon-pairs at wavelengths of 764nm and 1221nm via type-I spontaneous four-wave mixing in a polarization-maintaining fiber. Polarization entanglement was verified by a polarization-correlation measurement with a visibility of 95.5% from raw coincidence counts and the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality with $S=2.70pm0.04$. The long-term phase-stability was characterized by an Allan deviation of 8$^circ$ over an integration time of about 1 hour with no active phase-stabilization.
We experimentally demonstrate a polarization-entangled photon source at 810 nm using a type-II phase-matched PPKTP crystal pumped by a low-cost, broadband laser diode with a central wavelength of 405 nm and a typical bandwidth of 0.53 nm. The PPKTP crystal is placed in a Sagnac-loop to realize the compact size and high stability. The downconverted biphotons, the signal and the idler, have typical bandwidths of 5.57 nm and 7.32 nm. We prepare two Bell states |Psi+> and |Psi-> with the fidelities of 0.948+-0.004 and 0.963+-0.002. In polarization correlation measurement, the visibilities are all higher than 96.2%, and in the Bell inequality test, the S value can achieve 2.78+-0.01. To our knowledge, this experiment is the first to combine a multi-mode pump laser with a Sagnac-loop configuration. This high-quality and low-cost entangled photon source may have many practical applications in quantum information processing.
We demonstrate pulsed polarization-entangled photons generated from a periodically poled $mathrm{KTiOPO_4}$ (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied, the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 $pm$ 0.0002 for $left| {psi ^ -} rightrangle$ and 0.980 $pm$ 0.001 for $left| {psi ^ +} rightrangle$ respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.
High-fidelity polarization-entangled photons are a powerful resource for quantum communication, distributing entanglement and quantum teleportation. The Bell-CHSH inequality $Sleq2$ is violated by bipartite entanglement and only maximally entangled states can achieve $S=2sqrt{2}$, the Tsirelson bound. Spontaneous parametric down-conversion sources can produce entangled photons with correlations close to the Tsirelson bound. Sagnac configurations offer intrinsic stability, compact footprint and high collection efficiency, however, there is often a trade off between source brightness and entanglement visibility. Here, we present a Sagnac polarization-entangled source with $2sqrt{2}-S=(5.65pm0.57)times10^{-3}$, on-par with the highest values recorded, while generating and detecting $(4660pm70)$ pairs/s/mW, which is a substantially higher brightness than previously reported for Sagnac sources and around two orders of magnitude brighter than for traditional cone sources with the highest $S$ parameter. Our source records $0.9953pm0.0003$ concurrence and $0.99743pm0.00014$ fidelity to an ideal Bell state. By studying systematic errors in Sagnac sources, we identify that the precision of the collection focal point inside the crystal plays the largest role in reducing the $S$ parameter in our experiment. We provide a pathway that could enable the highest $S$ parameter recorded with a Sagnac source to-date while maintaining very high brightness.
Entangled photon pair sources based on bulk optics are approaching optimal design and implementation, with high state fidelities, spectral purities and heralding efficiencies, but generally low brightness. Integrated entanglement sources, while providing higher brightness and low-power operation, often sacrifice performance in output state quality and coupling efficiency. Here we present a polarization-entangled pair source based on a hybrid approach of waveguiding and bulk optics, addressing every metric simultaneously. We show 96% fidelity to the singlet state, 82% Hong-Ou-Mandel interference visibility, 43% average Klyshko efficiency, and a high brightness of $2.9times10^6$ pairs/(mode$cdot$s$cdot$mW), while requiring only microwatts of pump power.
Noise and imperfection of realistic devices are major obstacles for implementing quantum cryptography. In particular birefringence in optical fibers leads to decoherence of qubits encoded in polarization of photon. We show how to overcome this problem by doing single qubit quantum communication without a shared spatial reference frame and precise timing. Quantum information will be encoded in pair of photons using ``tag operations which corresponds to the time delay of one of the polarization modes. This method is robust against the phase instability of the interferometers despite the use of time-bins. Moreover synchronized clocks are not required in the ideal situation no photon loss case as they are only necessary to label the different encoded qubits.