Magnetic Lattices for Orthosymplectic Quivers


Abstract in English

For any gauge theory, there may be a subgroup of the gauge group which acts trivially on the matter content. While many physical observables are not sensitive to this fact, the identification of the precise gauge group becomes crucial when the magnetic spectrum of the theory is considered. This question is addressed in the context of Coulomb branches for $3$d $mathcal{N}=4$ quiver gauge theories, which are moduli spaces of dressed monopole operators. Since monopole operators are characterized by their magnetic charge, the identification of the gauge group is imperative for the determination of the magnetic lattice. It is well-known that the gauge group of unframed unitary quivers is the product of all unitary nodes in the quiver modded out by the diagonal $mathrm{U}(1)$ acting trivially on the matter representation. This reasoning generalises to the notion that a choice of gauge group associated to a quiver is given by the product of the individual nodes quotiented by any subgroup that acts trivially on the matter content. For unframed (unitary-) orthosymplectic quivers composed of $mathrm{SO}(textrm{even})$, $mathrm{USp}$, and possibly $mathrm{U}$ gauge nodes, the maximal subgroup acting trivially is a diagonal $mathbb{Z}_2$. For unframed unitary quivers with a single $mathrm{SU}(N)$ node it is $mathbb{Z}_N$. We use this notion to compute the Coulomb branch Hilbert series of many unitary-orthosymplectic quivers. Examples include nilpotent orbit closures of the exceptional E-type algebras and magnetic quivers that arise from brane physics. This includes Higgs branches of theories with 8 supercharges in dimensions $4$, $5$, and $6$. A crucial ingredient in the calculation of exact refined Hilbert series is the alternative construction of unframed magnetic quivers from resolved Slodowy slices, whose Hilbert series can be derived from Hall-Littlewood polynomials.

Download