Recently, the existence of an Amplituhedron for tree level amplitudes in the bi-adjoint scalar field theory has been proved by Arkhani-Hamed et al. We argue that hyperbolic geometry constitutes a natural framework to address the study of positive geometries in moduli spaces of Riemann surfaces, and thus to try to extend this achievement beyond tree level. In this paper we begin an exploration of these ideas starting from the simplest example of hyperbolic geometry, the hyperbolic plane. The hyperboloid model naturally guides us to re-discover the moduli space Associahedron, and a new version of its kinematical avatar. As a by-product we obtain a solution to the scattering equations which can be interpreted as a special case of the two well known solutions in terms of spinor-helicity formalism. The construction is done in $1+2$ dimensions and this makes harder to understand how to extract the amplitude from the dlog of the space time Associahedron. Nevertheless, we continue the investigation accommodating a loop momentum in the picture. By doing this we are led to another polytope called Halohedron, which was already known to mathematicians. We argue that the Halohedron fulfils many criteria that make it plausible to be understood as a 1-loop Amplituhedron for the cubic theory. Furthermore, the hyperboloid model again allows to understand that a kinematical version of the Halohedron exists and is related to the one living in moduli space by a simple generalisation of the tree level map.
Any totally positive $(k+m)times n$ matrix induces a map $pi_+$ from the positive Grassmannian ${rm Gr}_+(k,n)$ to the Grassmannian ${rm Gr}(k,k+m)$, whose image is the amplituhedron $mathcal{A}_{n,k,m}$ and is endowed with a top-degree form called the canonical form ${bfOmega}(mathcal{A}_{n,k,m})$. This construction was introduced by Arkani-Hamed and Trnka, where they showed that ${bfOmega}(mathcal{A}_{n,k,4})$ encodes scattering amplitudes in $mathcal{N}=4$ super Yang-Mills theory. Moreover, the computation of ${bfOmega}(mathcal{A}_{n,k,m})$ is reduced to finding the triangulations of $mathcal{A}_{n,k,m}$. However, while triangulations of polytopes are fully captured by their secondary polytopes, the study of triangulations of objects beyond polytopes is still underdeveloped. We initiate the geometric study of subdivisions of $mathcal{A}_{n,k,m}$ and provide a concrete birational parametrization of fibers of $pi: {rm Gr}(k,n)dashrightarrow {rm Gr}(k,k+m)$. We then use this to explicitly describe a rational top-degree form $omega_{n,k,m}$ (with simple poles) on the fibers and compute ${bfOmega}(mathcal{A}_{n,k,m})$ as a summation of certain residues of $omega_{n,k,m}$. As main application of our approach, we develop a well-structured notion of secondary amplituhedra for conjugate to polytopes, i.e. when $n-k-1=m$ (even). We show that, in this case, each fiber of $pi$ is parametrized by a projective space and its volume form $omega_{n,k,m}$ has only poles on a hyperplane arrangement. Using such linear structures, for amplituhedra which are cyclic polytopes or conjugate to polytopes, we show that the Jeffrey-Kirwan residue computes ${bfOmega}(mathcal{A}_{n,k,m})$ from $omega_{n,k,m}$. Finally, we propose a more general framework of fiber positive geometries and analyze new families of examples such as fiber polytopes and Grassmann polytopes.
Determining the most general, consistent scalar tensor theory of gravity is important for building models of inflation and dark energy. In this work we investigate the number of degrees of freedom present in the theory of beyond Horndeski. We discuss how to construct the theory from the extrinsic curvature of the constant scalar field hypersurface, and find a simple expression for the action which guarantees the existence of the primary constraint necessary to avoid the Ostrogradsky instability. Our analysis is completely gauge-invariant. However we confirm that, mixing together beyond Horndeski with a different order of Horndeski, obstructs the construction of this primary constraint. Instead, when the mixing is between actions of the same order, the theory can be mapped to Horndeski through a generalised disformal transformation. This mapping however is impossible with beyond Horndeski alone, since we find that the theory is invariant under such a transformation. The picture that emerges is that beyond Horndeski is a healthy but isolated theory: combined with Horndeski, it either becomes Horndeski, or likely propagates a ghost.
We study the non-linear realisation of E11 originally proposed by West with particular emphasis on the issue of linearised gauge invariance. Our analysis shows even at low levels that the conjectured equations can only be invariant under local gauge transformations if a certain section condition that has appeared in a different context in the E11 literature is satisfied. This section condition also generalises the one known from exceptional field theory. Even with the section condition, the E11 duality equation for gravity is known to miss the trace component of the spin connection. We propose an extended scheme based on an infinite-dimensional Lie superalgebra, called the tensor hierarchy algebra, that incorporates the section condition and resolves the above issue. The tensor hierarchy algebra defines a generalised differential complex, which provides a systematic description of gauge invariance and Bianchi identities. It furthermore provides an E11 representation for the field strengths, for which we define a twisted first order self-duality equation underlying the dynamics.
The quiver Yangian, an infinite-dimensional algebra introduced recently in arXiv:2003.08909, is the algebra underlying BPS state counting problems for toric Calabi-Yau three-folds. We introduce trigonometric and elliptic analogues of quiver Yangians, which we call toroidal quiver algebras and elliptic quiver algebras, respectively. We construct the representations of the shifted toroidal and elliptic algebras in terms of the statistical model of crystal melting. We also derive the algebras and their representations from equivariant localization of three-dimensional $mathcal{N}=2$ supersymmetric quiver gauge theories, and their dimensionally-reduced counterparts. The analysis of supersymmetric gauge theories suggests that there exist even richer classes of algebras associated with higher-genus Riemann surfaces and generalized cohomology theories.