Do you want to publish a course? Click here

Variational Representations and Neural Network Estimation of Renyi Divergences

73   0   0.0 ( 0 )
 Added by Jeremiah Birrell
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We derive a new variational formula for the Renyi family of divergences, $R_alpha(Q|P)$, between probability measures $Q$ and $P$. Our result generalizes the classical Donsker-Varadhan variational formula for the Kullback-Leibler divergence. We further show that this Renyi variational formula holds over a range of function spaces; this leads to a formula for the optimizer under very weak assumptions and is also key in our development of a consistency theory for Renyi divergence estimators. By applying this theory to neural-network estimators, we show that if a neural network family satisfies one of several strengthen

rate research

Read More

Variational representations of divergences and distances between high-dimensional probability distributions offer significant theoretical insights and practical advantages in numerous research areas. Recently, they have gained popularity in machine learning as a tractable and scalable approach for training probabilistic models and for statistically differentiating between data distributions. Their advantages include: 1) They can be estimated from data as statistical averages. 2) Such representations can leverage the ability of neural networks to efficiently approximate optimal solutions in function spaces. However, a systematic and practical approach to improving tightness of such variational formulas, and accordingly accelerate statistical learning and estimation from data, is lacking. Here we develop such a methodology for building new, tighter variational representations of divergences. Our approach relies on improved objective functionals constructed via an auxiliary optimization problem. Furthermore, the calculation of the functional Hessian of objective functionals unveils local curvature differences around the common optimal variational solution; this quantifies and orders the tightness gains between different variational representations. Finally, numerical simulations utilizing neural-network optimization demonstrate that tighter representations can result in significantly faster learning and more accurate estimation of divergences in both synthetic and real datasets (of more than 1000 dimensions), often accelerated by nearly an order of magnitude.
The estimation of an f-divergence between two probability distributions based on samples is a fundamental problem in statistics and machine learning. Most works study this problem under very weak assumptions, in which case it is provably hard. We consider the case of stronger structural assumptions that are commonly satisfied in modern machine learning, including representation learning and generative modelling with autoencoder architectures. Under these assumptions we propose and study an estimator that can be easily implemented, works well in high dimensions, and enjoys faster rates of convergence. We verify the behavior of our estimator empirically in both synthetic and real-data experiments, and discuss its direct implications for total correlation, entropy, and mutual information estimation.
We present a unified technique for sequential estimation of convex divergences between distributions, including integral probability metrics like the kernel maximum mean discrepancy, $varphi$-divergences like the Kullback-Leibler divergence, and optimal transport costs, such as powers of Wasserstein distances. The technical underpinnings of our approach lie in the observation that empirical convex divergences are (partially ordered) reverse submartingales with respect to the exchangeable filtration, coupled with maximal inequalities for such processes. These techniques appear to be powerful additions to the existing literature on both confidence sequences and convex divergences. We construct an offline-to-sequential device that converts a wide array of existing offline concentration inequalities into time-uniform confidence sequences that can be continuously monitored, providing valid inference at arbitrary stopping times. The resulting sequential bounds pay only an iterated logarithmic price over the corresponding fixed-time bounds, retaining the same dependence on problem parameters (like dimension or alphabet size if applicable).
Parametric stochastic simulators are ubiquitous in science, often featuring high-dimensional input parameters and/or an intractable likelihood. Performing Bayesian parameter inference in this context can be challenging. We present a neural simulator-based inference algorithm which simultaneously offers simulation efficiency and fast empirical posterior testability, which is unique among modern algorithms. Our approach is simulation efficient by simultaneously estimating low-dimensional marginal posteriors instead of the joint posterior and by proposing simulations targeted to an observation of interest via a prior suitably truncated by an indicator function. Furthermore, by estimating a locally amortized posterior our algorithm enables efficient empirical tests of the robustness of the inference results. Such tests are important for sanity-checking inference in real-world applications, which do not feature a known ground truth. We perform experiments on a marginalized version of the simulation-based inference benchmark and two complex and narrow posteriors, highlighting the simulator efficiency of our algorithm as well as the quality of the estimated marginal posteriors. Implementation on GitHub.
53 - Tomonori Ugajin 2018
In this paper, we develop a novel way to perturbatively calculate Renyi relative divergences $D_{gamma}(rho|| sigma) ={rm tr} rho^{gamma} sigma^{1-gamma}$ and related quantities without using replica trick as well as analytic continuation. We explicitly determine the form of the perturbative term at any order by an integral along the modular flow of the unperturbed state. By applying the prescription to a class of reduced density matrices in conformal field theory, we find that the second order term of certain linear combination of the divergences has a holographic expression in terms of bulk symplectic form, which is a one parameter generalization of the statement Fisher information = Bulk canonical energy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا