Do you want to publish a course? Click here

Investigating Extra-solar Planetary System Qatar-1 through Transit Observations

124   0   0.0 ( 0 )
 Added by Parijat Thakur
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of the transit timing variation (TTV) analysis of the extra-solar planet Qatar-1b using thirty eight light curves. Our analysis combines thirty five previously available transit light curves with three new transits observed by us between June 2016 and September 2016 using the 2-m Himalayan Chandra Telescope (HCT) at the Indian Astronomical Observatory (Hanle, India). From these transit data, the physical and orbital parameters of the Qatar-1 system are determined. In addition to this, the ephemeris for the orbital period and mid-transit time are refined to investigate the possible TTV. We find that the null-TTV model provides the better fit to the (O-C) data. This indicates that there is no evidence for TTVs to confirm the presence of additional planets in the Qatar-1 system. The use of the 3.6-m Devasthal Optical Telescope (DOT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES, Nainital, India) could improve the photometric precision to examine the signature of TTVs in this system with a greater accuracy than in the present work.



rate research

Read More

The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.
570 - St. Raetz 2009
We report on observations of transit events of the transiting planets XO-1b and TrES-1 with a 25 cm telescope of the University Observatory Jena. With the transit timings for XO-1b from all 50 available XO, SuperWASP, Transit Light Curve (TLC)-Project- and Exoplanet Transit Database (ETD)-data, including our own I-band photometry obtained in March 2007, we find that the orbital period is P= (3.941501 +/- 0.000001) d, a slight change by ~3 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we present new R-band photometry of two transits of TrES-1. With the help of all available transit times from literature this allows us to refine the estimate of the orbital period: P=(3.0300722 +/- 0.0000002) d. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons.
HD95086 (A8V, 17Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5MJup have been directly imaged. Our study aims to characterize the physical and orbital properties of HD95086b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light. We used HARPS at the ESO 3.6m telescope to monitor the radial velocity of HD95086 over 2 years and investigate the existence of giant planets at less than 3au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10au at six epochs between 2015 and 2017. We do not detect additional giant planets around HD95086. We identified the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD95086b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7-L9 dwarf spectral templates. The extremely red 1-4um spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planets orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e=0.2 (0.0 to 0.5), with a semi-major axis 52au corresponding to orbital periods of 288$ yrs and an inclination that peaks at i = 141deg, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300au, consistent in radial extent with recent ALMA 1.3mm resolved observations.
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the Solar System is unusual at the ~1% level among Sun-like stars (or ~0.1% among all stars). But why are we different? Successful formation models for both the Solar System and exoplanet systems rely on two key processes: orbital migration and dynamical instability. Systems of close-in super-Earths or sub-Neptunes require substantial radial inward motion of solids either as drifting mm- to cm-sized pebbles or migrating Earth-mass or larger planetary embryos. We argue that, regardless of their formation mode, the late evolution of super-Earth systems involves migration into chains of mean motion resonances, generally followed by instability when the disk dissipates. This pattern is likely also ubiquitous in giant planet systems. We present three models for inner Solar System formation -- the low-mass asteroid belt, Grand Tack, and Early Instability models -- each invoking a combination of migration and instability. We identify bifurcation points in planetary system formation. We present a series of events to explain why our Solar System is so weird. Jupiters core must have formed fast enough to quench the growth of Earths building blocks by blocking the flux of inward-drifting pebbles. The large Jupiter/Saturn mass ratio is rare among giant exoplanets but may be required to maintain Jupiters wide orbit. The giant planets instability must have been gentle, with no close encounters between Jupiter and Saturn, also unusual in the larger (exoplanet) context. Our Solar System system is thus the outcome of multiple unusual, but not unheard of, events.
Transits in the planetary system WASP-4 were recently found to occur 80s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt = -9.2 +/- 1.1 ms/yr. We rule out instrumental issues, stellar activity and the Applegate mechanism as possible causes. The light-time effect is also not favoured due to the non-detection of changes in the systemic velocity. Orbital decay and apsidal precession are plausible but unproven. WASP-4b is only the third hot Jupiter known to show transit timing variations to high confidence. We discuss a variety of observations of this and other planetary systems that would be useful in improving our understanding of WASP-4 in particular and orbital decay in general.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا