Do you want to publish a course? Click here

Universal criticality of thermodynamic curvatures for charged AdS black holes

164   0   0.0 ( 0 )
 Added by Morteza Rafiee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we analytically study the critical exponents and universal amplitudes of the thermodynamic curvatures such as the intrinsic and extrinsic curvature at the critical point of the small-large black hole phase transition for the charged AdS black holes. At the critical point, it is found that the normalized intrinsic curvature $R_N$ and extrinsic curvature $K_N$ has critical exponents 2 and 1, respectively. Based on them, the universal amplitudes $R_Nt^2$ and $K_Nt$ are calculated with the temperature parameter $t=T/T_c-1$ where $T_c$ the critical value of the temperature. Near the critical point, we find that the critical amplitude of $R_Nt^2$ and $K_Nt$ is $-frac{1}{2}$ when $trightarrow0^+$, whereas $R_Nt^2approx -frac{1}{8}$ and $K_Ntapprox-frac{1}{4}$ in the limit $trightarrow0^-$. These results not only hold for the four dimensional charged AdS black hole, but also for the higher dimensional cases. Therefore, such universal properties will cast new insight into the thermodynamic geometries and black hole phase transitions.



rate research

Read More

We investigate the intrinsic and extrinsic curvatures of certain hypersurfaces in the thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordstr{o}m-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant $Q$ hypersurface has the same sign as the heat capacity around the phase transition points. For a Kerr-Newmann-AdS (KN-AdS) black hole, the extrinsic curvature of $Q to 0$ hypersurface (Kerr black hole) or $J to 0$ hypersurface (RN black black hole) has the same sign as the heat capacity around the phase transition points. The extrinsic curvature also diverges at the phase transition points. The intrinsic curvature of the hypersurfaces diverges at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN and Kerr ones cite{ref1}. This approach can be easily generalized to an arbitrary thermodynamic system.
In this paper, the new formalism of thermodynamic geometry proposed in [1] is employed in investigating phase transition points and the critical behavior of a Gauss Bonnet-AdS black hole in four dimensional spacetime. In this regard, extrinsic and intrinsic curvatures of a certain kind of hypersurface immersed in the thermodynamic manifold contain information about stability/instability of heat capacities. We, therefore, calculate the intrinsic curvature of the $Q$-zero hypersurface for a four-dimensional neutral Gauss Bonnet black hole case in the extended phase space. Interestingly, intrinsic curvature can be positive for small black holes at low temperature, which indicates a repulsive interaction among black hole microstructures. This finding is in contrast with the five-dimensional neutral Gauss Bonnet black hole with only dominant attractive interaction between its microstructures.
We suggest a new thermodynamic curvature, constructed via adiabatic compressibility, for examining the internal microstructure of charged black holes in an anti-de Sitter (AdS) background. We analyze the microscopic properties of small-large phase transition of black holes with pressure and volume as the fluctuation variables. We observe that strong repulsive interactions dominate among the micro-structures of near extremal small black holes, and the thermodynamic curvature diverges to positive infinity for the extremal black holes. At the critical point, however, thermodynamic curvature diverges to negative infinity.
In this paper, the thermodynamic property of charged AdS black holes is studied in rainbow gravity. By the Heisenberg Uncertainty Principle and the modified dispersion relation, we obtain deformed temperature. Moreover, in rainbow gravity we calculate the heat capacity in a fixed charge and discuss the thermal stability. We also obtain a similar behaviour with the liquid-gas system in extending phase space (including (P) and (r)) and study its critical behavior with the pressure given by the cosmological constant and with a fixed black hole charge (Q). Furthermore, we study the Gibbs function and find its characteristic swallow tail behavior, which indicates the phase transition. We also find there is a special value about the mass of test particle which would lead the black hole to zero temperature and a diverging heat capacity with a fixed charge.
We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا