No Arabic abstract
Analog computing hardwares, such as Processing-in-memory (PIM) accelerators, have gradually received more attention for accelerating the neural network computations. However, PIM accelerators often suffer from intrinsic noise in the physical components, making it challenging for neural network models to achieve the same performance as on the digital hardware. Previous works in mitigating intrinsic noise assumed the knowledge of the noise model, and retraining the neural networks accordingly was required. In this paper, we propose a noise-agnostic method to achieve robust neural network performance against any noise setting. Our key observation is that the degradation of performance is due to the distribution shifts in network activations, which are caused by the noise. To properly track the shifts and calibrate the biased distributions, we propose a noise-aware batch normalization layer, which is able to align the distributions of the activations under variational noise inherent in the analog environments. Our method is simple, easy to implement, general to various noise settings, and does not need to retrain the models. We conduct experiments on several tasks in computer vision, including classification, object detection and semantic segmentation. The results demonstrate the effectiveness of our method, achieving robust performance under a wide range of noise settings, more reliable than existing methods. We believe that our simple yet general method can facilitate the adoption of analog computing devices for neural networks.
Modern neural networks are over-parametrized. In particular, each rectified linear hidden unit can be modified by a multiplicative factor by adjusting input and output weights, without changing the rest of the network. Inspired by the Sinkhorn-Knopp algorithm, we introduce a fast iterative method for minimizing the L2 norm of the weights, equivalently the weight decay regularizer. It provably converges to a unique solution. Interleaving our algorithm with SGD during training improves the test accuracy. For small batches, our approach offers an alternative to batch-and group-normalization on CIFAR-10 and ImageNet with a ResNet-18.
Traditional neural networks require enormous amounts of data to build their complex mappings during a slow training procedure that hinders their abilities for relearning and adapting to new data. Memory-augmented neural networks enhance neural networks with an explicit memory to overcome these issues. Access to this explicit memory, however, occurs via soft read and write operations involving every individual memory entry, resulting in a bottleneck when implemented using the conventional von Neumann computer architecture. To overcome this bottleneck, we propose a robust architecture that employs a computational memory unit as the explicit memory performing analog in-memory computation on high-dimensional (HD) vectors, while closely matching 32-bit software-equivalent accuracy. This is achieved by a content-based attention mechanism that represents unrelated items in the computational memory with uncorrelated HD vectors, whose real-valued components can be readily approximated by binary, or bipolar components. Experimental results demonstrate the efficacy of our approach on few-shot image classification tasks on the Omniglot dataset using more than 256,000 phase-change memory devices. Our approach effectively merges the richness of deep neural network representations with HD computing that paves the way for robust vector-symbolic manipulations applicable in reasoning, fusion, and compression.
Convolutional neural networks (CNN) have recently achieved state-of-the-art results in various applications. In the case of image recognition, an ideal model has to learn independently of the training data, both local dependencies between the three components (R,G,B) of a pixel, and the global relations describing edges or shapes, making it efficient with small or heterogeneous datasets. Quaternion-valued convolutional neural networks (QCNN) solved this problematic by introducing multidimensional algebra to CNN. This paper proposes to explore the fundamental reason of the success of QCNN over CNN, by investigating the impact of the Hamilton product on a color image reconstruction task performed from a gray-scale only training. By learning independently both internal and external relations and with less parameters than real valued convolutional encoder-decoder (CAE), quaternion convolutional encoder-decoders (QCAE) perfectly reconstructed unseen color images while CAE produced worst and gray-sca
As an indispensable component, Batch Normalization (BN) has successfully improved the training of deep neural networks (DNNs) with mini-batches, by normalizing the distribution of the internal representation for each hidden layer. However, the effectiveness of BN would diminish with scenario of micro-batch (e.g., less than 10 samples in a mini-batch), since the estimated statistics in a mini-batch are not reliable with insufficient samples. In this paper, we present a novel normalization method, called Batch Kalman Normalization (BKN), for improving and accelerating the training of DNNs, particularly under the context of micro-batches. Specifically, unlike the existing solutions treating each hidden layer as an isolated system, BKN treats all the layers in a network as a whole system, and estimates the statistics of a certain layer by considering the distributions of all its preceding layers, mimicking the merits of Kalman Filtering. BKN has two appealing properties. First, it enables more stable training and faster convergence compared to previous works. Second, training DNNs using BKN performs substantially better than those using BN and its variants, especially when very small mini-batches are presented. On the image classification benchmark of ImageNet, using BKN powered networks we improve upon the best-published model-zoo results: reaching 74.0% top-1 val accuracy for InceptionV2. More importantly, using BKN achieves the comparable accuracy with extremely smaller batch size, such as 64 times smaller on CIFAR-10/100 and 8 times smaller on ImageNet.
In this paper, we study normalization methods for neural networks from the perspective of elimination singularity. Elimination singularities correspond to the points on the training trajectory where neurons become consistently deactivated. They cause degenerate manifolds in the loss landscape which will slow down training and harm model performances. We show that channel-based normalizations (e.g. Layer Normalization and Group Normalization) are unable to guarantee a far distance from elimination singularities, in contrast with Batch Normalization which by design avoids models from getting too close to them. To address this issue, we propose BatchChannel Normalization (BCN), which uses batch knowledge to avoid the elimination singularities in the training of channel-normalized models. Unlike Batch Normalization, BCN is able to run in both large-batch and micro-batch training settings. The effectiveness of BCN is verified on many tasks, including image classification, object detection, instance segmentation, and semantic segmentation. The code is here: https://github.com/joe-siyuan-qiao/Batch-Channel-Normalization.