Do you want to publish a course? Click here

Universal scaling and phase transitions of coupled phase oscillator populations

111   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kuramoto model, which serves as a paradigm for investigating synchronization phenomenon of oscillatory system, is known to exhibit second-order, i.e., continuous, phase transitions in the macroscopic order parameter. Here, we generalize a number of classical results by presenting a general framework for capturing, analytically, the critical scaling of the order parameter at the onset of synchronization. Using a self-consistent approach and constructing a characteristic function, we identify various phase transitions toward synchrony and establish scaling relations describing the asymptotic dependence of the order parameter on coupling strength near the critical point. We find that the geometric properties of the characteristic function, which depends on the natural frequency distribution, determines the scaling properties of order parameter above the criticality.



rate research

Read More

The critical point of a topological phase transition is described by a conformal field theory, where finite-size corrections to energy are uniquely related to its central charge. We investigate the finite-size scaling away from criticality and find a scaling function, which discriminates between phases with different topological indexes. This function appears to be universal for all five Altland-Zirnbauer symmetry classes with non-trivial topology in one spatial dimension. We obtain an analytic form of the scaling function and compare it with numerical results.
91 - Can Xu , Xuebin Wang , 2020
We present an analytical description for the collective dynamics of oscillator ensembles with higher-order coupling encoded by simplicial structure, which serves as an illustrative and insightful paradigm for brain function and information storage. The novel dynamics of the system, including abrupt desynchronization and multistability, are rigorously characterized and the critical points that correspond to a continuum of first-order phase transitions are found to satisfy universal scaling properties. More importantly, the underlying bifurcation mechanism giving rise to multiple clusters with arbitrary ensemble size is characterized using a rigorous spectral analysis of the stable cluster states. As a consequence of $SO_2$ group symmetry, we show that the continuum of abrupt desynchronization transitions result from the instability of a collective mode under the nontrivial antisymmetric manifold in the high dimensional phase space.
Spontaneous synchronization is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collective oscillations at a common frequency. The Kuramoto model provides the basic analytical framework to study spontaneous synchronization. The model comprises limit-cycle oscillators with distributed natural frequencies interacting through a mean-field coupling. Although more than forty years have passed since its introduction, the model continues to occupy the centre-stage of research in the field of non-linear dynamics, and is also widely applied to model diverse physical situations. In this brief review, starting with a derivation of the Kuramoto model and the synchronization phenomenon it exhibits, we summarize recent results on the study of a generalized Kuramoto model that includes inertial effects and stochastic noise. We describe the dynamics of the generalized model from a different yet a rather useful perspective, namely, that of long-range interacting systems driven out of equilibrium by quenched disordered external torques. A system is said to be long-range interacting if the inter-particle potential decays slowly as a function of distance. Using tools of statistical physics, we highlight the equilibrium and nonequilibrium aspects of the dynamics of the generalized Kuramoto model, and uncover a rather rich and complex phase diagram that it exhibits, which underlines the basic theme of intriguing emergent phenomena that are exhibited by many-body complex systems.
Synchronization is critical for system function in applications ranging from cardiac pacemakers to power grids. Existing optimization techniques rely largely on global information, and while they induce certain local properties, those alone do not yield optimal systems. Therefore, while useful for designing man-made systems, existing theory provides limited insight into self-optimization of naturally-occurring systems that rely on local information and offer limited potential for decentralized optimization. Here we present a method for grass-roots optimization of synchronization, which is a multiscale mechanism involving local optimizations of smaller subsystems that are coordinated to collectively optimize an entire system, and the dynamics of such systems are particularly robust to islanding or targeted attacks. In addition to shedding light on self-optimization in natural systems, grass-roots optimization can also support the parallelizable and scalable engineering of man-made systems.
146 - Yusuke Suda , Koji Okuda 2015
Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this paper, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا