No Arabic abstract
The overwhelming foreground causes severe contamination on the detection of 21-cm signal during the Epoch of Reionization (EoR). Among various foreground components, the Galactic free-free emission is less studied, so that its impact on the EoR observation remains unclear. To better constrain this emission, we perform the Monte Carlo simulation of H$alpha$ emission, which comprises direct and scattered H$alpha$ radiation from HII regions and warm ionized medium (WIM). The positions and radii of HII regions are quoted from the WISE HII catalog, and the WIM is described by an axisymmetric model. The scattering is off dust and free electrons that are realized by applying an exponential fitting to the HI4PI HI map and an exponential disk model, respectively. The simulated H$alpha$ intensity, the Simfast21 software, and the latest SKA1-Low layout configuration are employed to simulate the SKA observed images of Galactic free-free emission and the EoR signal. By analyzing the one-dimensional power spectra, we find that the Galactic free-free emission can be about $10^{5.4}$-$10^{2.1}$, $10^{5.0}$-$10^{1.7}$, and $10^{4.3}$-$10^{1.1}$ times more luminous than the EoR signal on scales of $0.1~{rm Mpc^{-1}} < k < 2~{rm Mpc^{-1}}$ in the 116-124, 146-154, and 186-194 MHz frequency bands, respectively. We further calculate the two-dimensional power spectra inside the EoR window and show that the power leaked by Galactic free-free emission can still be significant, as the power ratios can reach about $110%$-$8000%$, $30%$-$2400%$, and $10%$-$250%$ on scales of $0.5~{rm Mpc^{-1}} lesssim k lesssim 1~{rm Mpc^{-1}}$ in three frequency bands. Therefore, we indicate that the Galactic free-free emission should be carefully treated in future EoR detections.
The overwhelming foreground contamination hinders the accurate detection of the 21-cm signal of neutral hydrogen during the Epoch of Reionization (EoR). Among various foreground components, the Galactic free-free emission is less studied, so that its impact on the EoR observations remains unclear. In this work, we employ the observed $rm Halpha$ intensity map with the correction of dust absorption and scattering, the Simfast21 software, and the latest SKA1-Low layout configuration to simulate the SKA observed images of Galactic free-free emission and the EoR signal. By calculating the one-dimensional power spectra from the simulated image cubes, we find that the Galactic free-free emission is about $10^{3.5}$-$10^{2.0}$, $10^{3.0}$-$10^{1.3}$, and $10^{2.5}$-$10^{1.0}$ times more luminous than the EoR signal on scales of $0.1~rm Mpc^{-1} < k < 2~rm Mpc^{-1}$ in the $116$-$124$, $146$-$154$, and $186$-$194$ ${rm MHz}$ frequency bands. We further analyse the two-dimensional power spectra inside the properly defined EoR window and find that the leaked Galactic free-free emission can still cause non-negligible contamination, as the ratios of its power (amplitude squared) to the EoR signal power can reach about $200%$, $60%$, and $15%$ on scales of $1.2~rm Mpc^{-1}$ in three frequency bands, respectively. Therefore, we conclude that the Galactic free-free emission, as a severe contaminating foreground component, needs to be carefully treated in the forthcoming deep EoR observations.
We present the derivation of the free-free emission on the Galactic plane between l=20 and 44 degrees and |b| < 4 degrees, using Radio Recombination Line (RRL) data from the HI Parkes All-Sky Survey (HIPASS). Following an upgrade on the RRL data reduction technique, which improves significantly the quality of the final RRL spectra, we have extended the analysis to three times the area covered in Alves et al. (2010). The final RRL map has an angular resolution of 14.8 arcmin and a velocity resolution of 20 km/s. A map of the electron temperature (Te) of the ionised gas is derived for the area under study using the line and continuum data from the present survey. The mean Te on the Galactic plane is 6000 K. The first direct measure of the free-free emission is obtained based on the derived Te map. Subtraction of this thermal component from the total continuum leaves the first direct measure of the synchrotron emission at 1.4 GHz. A narrow component of width 2 degrees is identified in the latitude distribution of the synchrotron emission. We present a list of HII regions and SNRs extracted from the present free-free and synchrotron maps, where we confirm the synchrotron nature of three objects: G41.12-0.21, G41.15+0.39 and G35.59-0.44. We also identify a bright (42 Jy) new double radio galaxy, J1841-0152, previously unrecognised owing to the high optical extinction in the region. The latitude distribution for the RRL-derived free-free emission shows that the WMAP Maximum Entropy Method (MEM) is too high by ~ 50 per cent, in agreement with other recent results. The extension of this study to the inner Galaxy region l=-50 to 50 degrees will allow a better overall comparison of the RRL result with WMAP.
The principles behind the computation of protein-ligand binding free energies by Monte Carlo integration are described in detail. The simulation provides gas-phase binding free energies that can be converted to aqueous energies by solvation corrections. The direct integration simulation has several characteristics beneficial to free-energy calculations. One is that the number of parameters that must be set for the simulation is small and can be determined objectively, making the outcome more deterministic, with respect to choice of input conditions, as compared to perturbation methods. Second, the simulation is free from assumptions about the starting pose or nature of the binding site. A final benefit is that binding free energies are a direct outcome of the simulation, and little processing is required to determine them. The well-studied T4 lysozyme experimental free energy data and crystal structures were used to evaluate the method.
We provide a new constraint on the small-scale density fluctuations, evaluating the diffuse background free-free emission from dark matter halos in the dark ages. If there exists a large amplitude of the matter density fluctuations on small scales, the excess enhances the early formation of dark matter halos. When the virial temperature is sufficiently high, the gas in a halo is heated up and ionized by thermal collision. The heated ionized gas emits photons by the free-free process. We would observe the sum of these photons as the diffuse background free-free emission. Assuming the analytical dark matter halo model including the gas density and temperature profile, we calculate the intensity of the diffuse background free-free emission from early-formed dark matter halos in the microwave frequency range. Comparing with the recent foreground analysis on cosmic microwave background, we obtain the constraint on the excess of the density fluctuations on small scales. Our constraint corresponds to $P_zeta lesssim 10^{-8}$ for $k simeq 1-100~mathrm{Mpc}^{-1}$ in terms of the curvature perturbation. Therefore, our constraint is the most stringent constraint on the perturbations below $1~rm Mpc$ scales.
We present a method for the direct evaluation of the difference between the free energies of two crystalline structures, of different symmetry. The method rests on a Monte Carlo procedure which allows one to sample along a path, through atomic-displacement-space, leading from one structure to the other by way of an intervening transformation that switches one set of lattice vectors for another. The configurations of both structures can thus be sampled within a single Monte Carlo process, and the difference between their free energies evaluated directly from the ratio of the measured probabilities of each. The method is used to determine the difference between the free energies of the fcc and hcp crystalline phases of a system of hard spheres.