Induced interactions and quench dynamics of bosonic impurities immersed in a Fermi sea


Abstract in English

We unravel the ground state properties and the non-equilibrium quantum dynamics of two bosonic impurities immersed in an one-dimensional fermionic environment by applying a quench of the impurity-medium interaction strength. In the ground state, the impurities and the Fermi sea are phase-separated for strong impurity-medium repulsions while they experience a localization tendency around the trap center for large attractions. We demonstrate the presence of attractive induced interactions mediated by the host for impurity-medium couplings of either sign and analyze the competition between induced and direct interactions. Following a quench to repulsive interactions triggers a breathing motion in both components, with an interaction dependent frequency and amplitude for the impurities, and a dynamical phase-separation between the impurities and their surrounding for strong repulsions. For attractive post-quench couplings a beating pattern owing its existence to the dominant role of induced interactions takes place with both components showing a localization trend around the trap center. In both quench scenarios, attractive induced correlations are manifested between non-interacting impurities and are found to dominate the direct ones only for quenches to attractive couplings.

Download