Do you want to publish a course? Click here

A Distant Fast Radio Burst Associated to its Host Galaxy with the Very Large Array

175   0   0.0 ( 0 )
 Added by Casey Law
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery and subarcsecond localization of a new Fast Radio Burst with the Karl G. Jansky Very Large Array and realfast search system. The FRB was discovered on 2019 June 14 with a dispersion measure of 959 pc/cm3. This is the highest DM of any localized FRB and its measured burst fluence of 0.6 Jy ms is less than nearly all other FRBs. The source is not detected to repeat in 15 hours of VLA observing and 153 hours of CHIME/FRB observing. We describe a suite of statistical and data quality tests we used to verify the significance of the event and its localization precision. Follow-up optical/infrared photometry with Keck and Gemini associate the FRB to a pair of galaxies with $rm{r}sim23$ mag. The false-alarm rate for radio transients of this significance that are associated with a host galaxy is roughly $3times10^{-4} rm{hr}^{-1}$. The two putative host galaxies have similar photometric redshifts of $z_{rm{phot}}sim0.6$, but different colors and stellar masses. Comparing the host distance to that implied by the dispersion measure suggests a modest (~ 50 pc/cm3) electron column density associated with the FRB environment or host galaxy/galaxies.



rate research

Read More

In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxys redshift to be $z=0.492pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $Omega_{mathrm{IGM}}=4.9 pm 1.3%$, in agreement with the expectation from WMAP, and including all of the so-called missing baryons. The $sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.
We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and precisely localize an FRB. We observed at 1.4 GHz and produced visibilities with 5 ms time resolution over 256 MHz of bandwidth. Dedispersed images were searched for transients with dispersion measures from 0 to 3000 pc/cm3. No transients were detected in observations of high Galactic latitude fields taken from September 2013 though October 2014. Observations of a known pulsar show that images typically had a thermal-noise limited sensitivity of 120 mJy/beam (8 sigma; Stokes I) in 5 ms and could detect and localize transients over a wide field of view. Our nondetection limits the FRB rate to less than 7e4/sky/day (95% confidence) above a fluence limit of 1.2 Jy-ms. Assuming a Euclidean flux distribution, the VLA rate limit is inconsistent with the published rate of Thornton et al. We recalculate previously published rates with a homogeneous consideration of the effects of primary beam attenuation, dispersion, pulse width, and sky brightness. This revises the FRB rate downward and shows that the VLA observations had a roughly 60% chance of detecting a typical FRB and that a 95% confidence constraint would require roughly 500 hours of similar VLA observing. Our survey also limits the repetition rate of an FRB to 2 times less than any known repeating millisecond radio transient.
83 - V. Ravi , M. Catha , L. DAddario 2019
Intense, millisecond-duration bursts of radio waves have been detected from beyond the Milky Way [1]. Their extragalactic origins are evidenced by their large dispersion measures, which are greater than expected for propagation through the Milky Way interstellar medium alone, and imply contributions from the intergalactic medium and potentially host galaxies [2]. Although several theories exist for the sources of these fast radio bursts, their intensities, durations and temporal structures suggest coherent emission from highly magnetised plasma [3,4]. Two sources have been observed to repeat [5,6], and one repeater (FRB 121102) has been localised to the largest star-forming region of a dwarf galaxy at a cosmological redshift of 0.19 [7, 8]. However, the host galaxies and distances of the so far non-repeating fast radio bursts are yet to be identified. Unlike repeating sources, these events must be observed with an interferometer with sufficient spatial resolution for arcsecond localisation at the time of discovery. Here we report the localisation of a fast radio burst (FRB 190523) to a few-arcsecond region containing a single massive galaxy at a redshift of 0.66. This galaxy is in stark contrast to the host of FRB 121102, being a thousand times more massive, with a greater than hundred times lower specific star-formation rate. The properties of this galaxy highlight the possibility of a channel for FRB production associated with older stellar populations.
Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes. Their physical origin remains unknown, but dozens of possible models have been postulated. Some FRB sources exhibit repeat bursts. Though over a hundred FRB sources have been discovered to date, only four have been localised and associated with a host galaxy, with just one of the four known to repeat. The properties of the host galaxies, and the local environments of FRBs, provide important clues about their physical origins. However, the first known repeating FRB has been localised to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localisation of a second repeating FRB source, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift $z = 0.0337 pm 0.0002$) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure further distinguish the local environment of FRB 180916.J0158+65 from that of the one previously localised repeating FRB source, FRB 121102. This demonstrates that repeating FRBs have a wide range of luminosities, and originate from diverse host galaxies and local environments.
We report on the host association of FRB 20181030A, a repeating fast radio burst (FRB) with a low dispersion measure (DM, 103.5 pc cm$^{-3}$) discovered by CHIME/FRB Collaboration et al. (2019a). Using baseband voltage data saved for its repeat bursts, we localize the FRB to a sky area of 5.3 sq. arcmin (90% confidence). Within the FRB localization region, we identify NGC 3252 as the most promising host, with an estimated chance coincidence probability $< 2.5 times 10^{-3}$. Moreover, we do not find any other galaxy with M$_{r} < -15$ AB mag within the localization region to the maximum estimated FRB redshift of 0.05. This rules out a dwarf host 5 times less luminous than any FRB host discovered to date. NGC 3252 is a star-forming spiral galaxy, and at a distance of $approx$ 20 Mpc, it is one of the closest FRB hosts discovered thus far. From our archival radio data search, we estimate a 3$sigma$ upper limit on the luminosity of a persistent compact radio source (source size $<$ 0.3 kpc at 20 Mpc) at 3 GHz to be ${rm 2 times 10^{26} erg~s^{-1} Hz^{-1}}$, at least 1500 times smaller than that of the FRB 20121102A persistent radio source. We also argue that a population of young millisecond magnetars alone cannot explain the observed volumetric rate of repeating FRBs. Finally, FRB 20181030A is a promising source for constraining FRB emission models due to its proximity, and we strongly encourage its multi-wavelength follow-up.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا