Do you want to publish a course? Click here

On coalescence as the origin of nuclei in hadronic collisions

105   0   0.0 ( 0 )
 Added by Kfir Blum
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The origin of weakly-bound nuclear clusters in hadronic collisions is a key question to be addressed by heavy-ion collision (HIC) experiments. The measured yields of clusters are approximately consistent with expectations from phenomenological statistical hadronisation models (SHMs), but a theoretical understanding of the dynamics of cluster formation prior to kinetic freeze out is lacking. The competing model is nuclear coalescence, which attributes cluster formation to the effect of final state interactions (FSI) during the propagation of the nuclei from kinetic freeze out to the observer. This phenomenon is closely related to the effect of FSI in imprinting femtoscopic correlations between continuum pairs of particles at small relative momentum difference. We give a concise theoretical derivation of the coalescence--correlation relation, predicting nuclear cluster spectra from femtoscopic measurements. We review the fact that coalescence derives from a relativistic Bethe-Salpeter equation, and recall how effective quantum mechanics controls the dynamics of cluster particles that are nonrelativistic in the cluster centre of mass frame. We demonstrate that the coalescence--correlation relation is roughly consistent with the observed cluster spectra in systems ranging from PbPb to pPb and pp collisions. Paying special attention to nuclear wave functions, we derive the coalescence prediction for hypertriton and show that it, too, is roughly consistent with the data. Our work motivates a combined experimental programme addressing femtoscopy and cluster production under a unified framework. Upcoming pp, pPb and peripheral PbPb data analysed within such a programme could stringently test coalescence as the origin of clusters.

rate research

Read More

Nuclides sharing the same mass number (isobars) are observed ubiquitously along the stability line. While having nearly identical radii, stable isobars can differ in shape, and present in particular different quadrupole deformations. We show that even small differences in these deformations can be probed by relativistic nuclear collisions experiments, where they manifest as deviations from unity in the ratios of elliptic flow coefficients taken between isobaric systems. Collider experiments with isobars represent, thus, a unique means to obtain quantitative information about the geometric shape of atomic nuclei.
75 - Giuliano Giacalone 2020
Preliminary data by the STAR collaboration at the BNL Relativistic Heavy Ion Collider shows that the elliptic flow, $v_2$, and the average transverse momentum, $langle p_t rangle$, of final-state hadrons produced in high-multiplicity $^{238}$U+$^{238}$U collisions are negatively correlated. This observation brings experimental evidence of a significant prolate deformation, $betaapprox 0.3$, in the colliding $^{238}$U nuclei. I show that a quantitative description of this new phenomenon can be achieved within the hydrodynamic framework of heavy-ion collisions, and that thus such kind of data in the context of high-energy nuclear experiments can help constrain the quadrupole deformation of the colliding species.
A report contains a review of recent theoretical investigations on kaonic atoms carried out at Stefan Meyer Institute of the Austrian Academy of Sciences. We discuss (1) a phenomenological quantum field theoretic model for bar-K N interactions at threshold of the reactions K^-p -> K^-p, K^-n -> K^-n and K^-d ->K^-d, and (2) the energy level displacements of the ground and nP excited states of kaonic hydrogen, (3) the contribution of the sigma-term to the shift of the energy level of the ground state of kaonic hydrogen, (4) the isospin-breaking and dispersive corrections to the energy level displacement of the ground state of kaonic hydrogen, (5) the radiative transitions nP -> 1S + gamma, induced by strong low-energy interactions and enhanced by the Coulomb interaction, in kaonic hydrogen and kaonic deuterium, (6) Perspectives and (7) Comments on the approach, where we adduce our recent results obtained after the Workshop EXA05.
The QCD equation of state at zero baryon chemical potential is the only element of the standard dynamical framework to describe heavy ion collisions that can be directly determined from first principles. Continuum extrapolated lattice QCD equations of state have been computed using 2+1 quark flavors (up/down and strange) as well as 2+1+1 flavors to investigate the effect of thermalized charm quarks on QCD thermodynamics. Lattice results have also indicated the presence of new strange resonances that not only contribute to the equation of state of QCD matter but also affect hadronic afterburners used to model the later stages of heavy ion collisions. We investigate how these new developments obtained from first principles calculations affect multiparticle correlations in heavy ion collisions. We compare the commonly used equation of state S95n-v1, which was constructed using what are now considered outdated lattice results and hadron states, to the current state-of-the-art lattice QCD equations of state with 2+1 and 2+1+1 flavors coupled to the most up-to-date hadronic resonances and their decays. New hadronic resonances lead to an enhancement in the hadronic spectra at intermediate $p_T$. Using an outdated equation of state can directly affect the extraction of the shear viscosity to entropy density ratio, $eta/s$, of the quark-gluon plasma and results for different flow observables. The effects of the QCD equation of state on multiparticle correlations of identified particles are determined for both AuAu $sqrt{s_{NN}}=200$ GeV and PbPb $sqrt{s_{NN}}=5.02$ TeV collisions. New insights into the $v_2{2}$ to $v_3{2}$ puzzle in ultracentral collisions are found. Flow observables of heavier particles exhibit more non-linear behavior regardless of the assumptions about the equation of state, which may provide a new way to constrain the temperature dependence of $eta/s$.
The production of dileptons with an invariant mass in the range 1 GeV < M < 5 GeV provides unique insight into the approach to thermal equilibrium in ultrarelativistic nucleus-nucleus collisions. In this mass range, they are produced through the annihilation of quark-antiquark pairs in the early stages of the collision. They are sensitive to the anisotropy of the quark momentum distribution, and also to the quark abundance, which is expected to be underpopulated relative to thermal equilibrium. We take into account both effects based on recent theoretical developments in QCD kinetic theory, and study how the dilepton mass spectrum depends on the shear viscosity to entropy ratio that controls the equilibration time. We evaluate the background from the Drell-Yan process and argue that future detector developments can suppress the additional background from semileptonic decays of heavy flavors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا