No Arabic abstract
This is a collection of the lecture notes of the three authors for a first-year graduate course on control system theory and design (ECE 515 , formerly ECE 415) at the ECE Department of the University of Illinois at Urbana-Champaign. This is a fundamental course on the modern theory of dynamical systems and their control, and builds on a first-level course in control that emphasizes frequency-domain methods (such as the course ECE 486 , formerly ECE 386, at UIUC ). The emphasis in this graduate course is on state space techniques, and it encompasses modeling , analysis (of structural properties of systems, such as stability, controllability, and observability), synthesis (of observers/compensators and controllers) subject to design specifications, and optimization . Accordingly, this set of lecture notes is organized in four parts, with each part dealing with one of the issues identified above. Concentration is on linear systems , with nonlinear systems covered only in some specific contexts, such as stability and dynamic optimization. Both continuous-time and discrete-time systems are covered, with the former, however, in much greater depth than the latter. The main objective of this course is to teach the student some fundamental principles within a solid conceptual framework, that will enable her/him to design feedback loops compatible with the information available on the states of the system to be controlled, and by taking into account considerations such as stability, performance, energy conservation, and even robustness. A second objective is to familiarize her/him with the available modern computational, simulation, and general software tools that facilitate the design of effective feedback loops
These lecture notes have been developed for the course Computational Social Choice of the Artificial Intelligence MSc programme at the University of Groningen. They cover mathematical and algorithmic aspects of voting theory.
Microgrids are increasingly recognized as a key technology for the integration of distributed energy resources into the power network, allowing local clusters of load and distributed energy resources to operate autonomously. However, microgrid operation brings new challenges, especially in islanded operation as frequency and voltage control are no longer provided by large rotating machines. Instead, the power converters in the microgrid must coordinate to regulate the frequency and voltage and ensure stability. We consider the problem of designing controllers to achieve these objectives. Using passivity theory to derive decentralized stability conditions for the microgrid, we propose a control design method for grid-forming inverters. For the analysis we use higher-order models for the inverters and also advanced dynamic models for the lines with an arbitrarily large number of states. By satisfying the decentralized condition formulated, plug-and-play operation can be achieved with guaranteed stability, and performance can also be improved by incorporating this condition as a constraint in corresponding optimization problems formulated. In addition, our control design can improve the power sharing properties of the microgrid compared to previous non-droop approaches. Finally, realistic simulations confirm that the controller design improves the stability and performance of the power network.
We propose a reachability approach for infinite and finite horizon multi-objective optimization problems for low-thrust spacecraft trajectory design. The main advantage of the proposed method is that the Pareto front can be efficiently constructed from the zero level set of the solution to a Hamilton-Jacobi-Bellman equation. We demonstrate the proposed method by applying it to a low-thrust spacecraft trajectory design problem. By deriving the analytic expression for the Hamiltonian and the optimal control policy, we are able to efficiently compute the backward reachable set and reconstruct the optimal trajectories. Furthermore, we show that any reconstructed trajectory will be guaranteed to be weakly Pareto optimal. The proposed method can be used as a benchmark for future research of applying reachability analysis to low-thrust spacecraft trajectory design.
We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) in road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which aims to solve a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization and the estimation of joint collision points with other agents. Moreover, we come up with a proprietary communication protocol to exchange trajectories with other agents. Experimental tests reveal the efficacy of proposed control system architecture.
This is a self-contained set of lecture notes covering various aspects of the theory of open quantum system, at a level appropriate for a one-semester graduate course. The main emphasis is on completely positive maps and master equations, both Markovian and non-Markovian.