Do you want to publish a course? Click here

VALES VI: ISM enrichment in star-forming galaxies up to z$sim$0.2 using $^{12}$CO(1-0), $^{13}$CO(1-0) and C$^{18}$O(1-0) line luminosity ratios

98   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations towards 27 low-redshift ($0.02< z<0.2$) star-forming galaxies taken from the Valparaiso ALMA/APEX Line Emission Survey (VALES). We perform stacking analyses of the $^{12}$CO($1-0$), $^{13}$CO($1-0$) and C$^{18}$O($1-0$) emission lines to explore the $L$ ($^{12}$CO($1-0$))/$L$($^{13}$CO($1-0$))) (hereafter $L$($^{12}$CO)/$L$($^{13}$CO)) and $L$($^{13}$CO($1-0$))/$L$(C$^{18}$O($1-0$)) (hereafter $L$($^{13}$CO)/$L$(C$^{18}$O) line luminosity ratio dependence as a function of different global galaxy parameters related to the star formation activity. The sample has far-IR luminosities $10^{10.1-11.9}$L$_{odot}$ and stellar masses of $10^{9.8-10.9}$M$_{odot}$ corresponding to typical star-forming and starburst galaxies at these redshifts. On average we find a $L$($^{12}$CO)/$L$($^{13}$CO) line luminosity ratio value of 16.1$pm$2.5. Galaxies with evidences of possible merging activity tend to show higher $L$($^{12}$CO)/$L$($^{13}$CO) ratios by a factor of two, while variations of this order are also found in galaxy samples with higher star formation rates or star formation efficiencies. We also find an average $L$($^{13}$CO)/$L$(C$^{18}$O) line luminosity ratio of 2.5$pm$0.6, which is in good agreement with those previously reported for starburst galaxies. We find that galaxy samples with high $L_{text{IR}}$, SFR and SFE show low $L$($^{13}$CO)/$L$(C$^{18}$O) line luminosity ratios with high $L$($^{12}$CO)/$L$($^{13}$CO) line luminosity ratios, suggesting that these trends are produced by selective enrichment of massive stars in young starbursts.



rate research

Read More

176 - Yoshiyuki Yajima 2020
While molecular gas mass is usually derived from $^{12}$CO($J$=1-0) - the most fundamental line to explore molecular gas - it is often derived from $^{12}$CO($J$=2-1) assuming a constant $^{12}$CO($J$=2-1)/$^{12}$CO($J$=1-0) line ratio ($R_{2/1}$). We present variations of $R_{2/1}$ and effects of the assumption that $R_{2/1}$ is a constant in 24 nearby galaxies using $^{12}$CO data obtained with the Nobeyama 45-m radio telescope and IRAM 30-m telescope. The median of $R_{2/1}$ for all galaxies is 0.61, and the weighted mean of $R_{2/1}$ by $^{12}$CO($J$=1-0) integrated-intensity is 0.66 with a standard deviation of 0.19. The radial variation of $R_{2/1}$ shows that it is high (~0.8) in the inner ~1 kpc while its median in disks is nearly constant at 0.60 when all galaxies are compiled. In the case that the constant $R_{2/1}$ of 0.7 is adopted, we found that the total molecular gas mass derived from $^{12}$CO($J$=2-1) is underestimated/overestimated by ~20%, and at most by 35%. The scatter of a molecular gas surface density within each galaxy becomes larger by ~30%, and at most by 120%. Indices of the spatially resolved Kennicutt-Schmidt relation by $^{12}$CO($J$=2-1) are underestimated by 10-20%, at most 39% in 17 out of 24 galaxies. $R_{2/1}$ has good positive correlations with star-formation rate and infrared color, and a negative correlation with molecular gas depletion time. There is a clear tendency of increasing $R_{2/1}$ with increasing kinetic temperature ($T_{rm kin}$). Further, we found that not only $T_{rm kin}$ but also pressure of molecular gas is important to understand variations of $R_{2/1}$. Special considerations should be made when discussing molecular gas mass and molecular gas properties inferred from $^{12}$CO($J$=2-1) instead of $^{12}$CO($J$=1-0).
Both the CO(2-1) and CO(1-0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2-1)-to-CO(1-0) ratio, $R_{21}$. We compare new, high quality CO(1-0) data from the IRAM 30-m EMPIRE survey to the latest available CO(2-1) maps from HERACLES, PHANGS-ALMA, and a new IRAM 30-m M51 Large Program. This allows us to measure $R_{21}$ across the full star-forming disc of nine nearby, massive, star-forming spiral galaxies at 27 (${sim} 1{-}2$ kpc) resolution. We find an average $R_{21} = 0.64pm0.09$ when we take the luminosity-weighted mean of all individual galaxies. This result is consistent with the mean ratio for disc galaxies that we derive from single-pointing measurements in the literature, $R_{rm 21, lit}~=~0.59^{+0.18}_{-0.09}$. The ratio shows weak radial variations compared to the point-to-point scatter in the data. In six out of nine targets the central enhancement in $R_{21}$ with respect to the galaxy-wide mean is of order $sim 10{-}20%$. We estimate an azimuthal scatter of $sim$20% in $R_{21}$ at fixed galactocentric radius but this measurement is limited by our comparatively coarse resolution of 1.5 kpc. We find mild correlations between $R_{21}$ and CO brightness temperature, IR intensity, 70-to-160$ mu$m ratio, and IR-to-CO ratio. All correlations indicate that $R_{21}$ increases with gas surface density, star formation rate surface density, and the interstellar radiation field.
We study the r31=LCO(3-2)/LCO(1-0) luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray selected AGN host galaxies from BASS and 37 infrared luminous galaxies from SLUGS. We find a trend for r31 to increase with star-formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for variation of r31, while the interstellar radiation field and cosmic ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (<r31>= 0.52 +/- 0.04 for SFGs and <r31> = 0.53 +/- 0.06 for AGN hosts). According to the results of UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 10$^4$ cm-3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R=0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R=0.78), but the increase in correlation is not statistically significant (p-value=0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift, and to compare it with studies of low-redshift galaxies, as is common practice.
We report a detailed CO(1-0) survey of a galaxy protocluster field at $z=2.16$, based on 475 hours of observations with the Australia Telescope Compact Array. We constructed a large mosaic of 13 individual pointings, covering an area of 21 arcmin$^2$ and $pm6500$ km/s range in velocity. We obtain a robust sample of 46 CO(1-0) detections spanning $z=2.09-2.22$, constituting the largest sample of molecular gas measurements in protoclusters to date. The CO emitters show an overdensity at $z=2.12-2.21$, suggesting a galaxy super-protocluster or a protocluster connected to large-scale filaments with ~120 cMpc size. We find that 90% CO emitters have distances $>0.5-4$ to the center galaxy, indicating that small area surveys would miss the majority of gas reservoirs in similar structures. Half of the CO emitters have velocities larger than escape velocities, which appears gravitationally unbound to the cluster core. These unbound sources are barely found within the $R_{200}$ radius around the center, which is consistent with a picture in which the cluster core is collapsed while outer regions are still in formation. Compared to other protoclusters, this structure contains relatively more CO emitters with relatively narrow line width and high luminosity, indicating galaxy mergers. We use these CO emitters to place the first constraint on the CO luminosity function and molecular gas density in an overdense environment. The amplitude of the CO luminosity function is 1.6$pm$0.5 orders of magnitudes higher than observed for field galaxy samples at $zsim2$, and one order of magnitude higher than predictions for galaxy protoclusters from semi-analytical SHARK models. We derive a high molecular gas density of $0.6-1.3times10^{9}$ $M_odot$ cMpc$^{-3}$ for this structure, consistent with predictions for cold gas density of massive structures from hydro-dynamical DIANOGA simulations.
127 - Chelsea E. Sharon 2012
We present high-resolution CO(1-0) observations of the lensed submillimeter galaxy (SMG) SMM J14011+0252 at z=2.6. Comparison to the previously-detected CO(3-2) line gives an intensity ratio of r_3,1=0.97+/-0.16 in temperature units, larger than is typical for SMGs but within the range seen in the low-z ultraluminous infrared galaxy population. Combining our new data with previous mid-J CO observations, we perform a single-phase large velocity gradient (LVG) analysis to constrain the physical conditions of the molecular gas. Acceptable models have significant degeneracies between parameters, even when we rule out all models that produce optically thin emission, but we find that the bulk of the molecular gas has T_kin=20-60 K, n_{H_2}~10^4-10^5 cm^-3, and N_CO/Delta-v=10^{17.00+/-0.25} cm^-2 km^-1 s. For our best-fit models to self-consistently recover a typical CO-to-H_2 abundance and a plausible degree of virialization, the local velocity gradient in the molecular gas must be substantially larger than its galaxy-wide average. This conclusion is consistent with a scenario in which SMM J14011+0252 has a fairly face-on orientation and a molecular ISM composed of many unresolved clouds. Using previous H-alpha observations, we find that SMM J14011+0252 has a spatially resolved star formation rate vs. molecular gas surface density relation inconsistent with those of normal local star-forming galaxies, even if we adopt a local disk-like CO-to-H_2 conversion factor as motivated by our LVG analysis. This discrepancy supports the inference of a star formation relation for high-z starbursts distinct from the local relation that is not solely due to differing choices of gas mass conversion factor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا