No Arabic abstract
In additive manufacturing, infill structures are commonly used to reduce the weight and cost of a solid part. Currently, most infill structure generation methods are based on the conventional 2.5-axis printing configuration, which, although able to satisfy the self-supporting condition on the infills, suffer from the well-known stair-case effect on the finished surface and the need of extensive support for overhang features. In this paper, based on the emerging continuous multi-axis printing configuration, we present a new lattice infill structure generation algorithm, which is able to achieve both the self-supporting condition for the infills and the support-free requirement at the boundary surface of the part. The algorithm critically relies on the use of three mutually orthogonal geodesic distance fields that are embedded in the tetrahedral mesh of the solid model. The intersection between the iso-geodesic distance surfaces of these three geodesic distance fields naturally forms the desired lattice of infill structure, while the density of the infills can be conveniently controlled by adjusting the iso-values. The lattice infill pattern in each curved slicing layer is trimmed to conform to an Eulerian graph so to generate a continuous printing path, which can effectively reduce the nozzle retractions during the printing process. In addition, to cater to the collision-free requirement and to improve the printing efficiency, we also propose a printing sequence optimization algorithm for determining a collision-free order of printing of the connected lattice infills, which seeks to reduce the air-move length of the nozzle. Ample experiments in both computer simulation and physical printing are performed, and the results give a preliminary confirmation of the advantages of our methodology.
This paper presents a new curved layer volume decomposition method for multi-axis support-free printing of freeform solid parts. Given a solid model to be printed that is represented as a tetrahedral mesh, we first establish a geodesic distance field embedded on the mesh, whose value at any vertex is the geodesic distance to the base of the model. Next, the model is naturally decomposed into curved layers by interpolating a number of iso-geodesic distance surfaces (IGDSs). These IGDSs morph from bottom-up in an intrinsic and smooth way owing to the nature of geodesics, which will be used as the curved printing layers that are friendly to multi-axis printing. In addition, to cater to the collision-free requirement and to improve the printing efficiency, we also propose a printing sequence optimization algorithm for determining the printing order of the IGDSs, which helps reduce the air-move path length. Ample experiments in both computer simulation and physical printing are performed, and the experimental results confirm the advantages of our method.
We propose a novel approach for performing convolution of signals on curved surfaces and show its utility in a variety of geometric deep learning applications. Key to our construction is the notion of directional functions defined on the surface, which extend the classic real-valued signals and which can be naturally convolved with with real-valued template functions. As a result, rather than trying to fix a canonical orientation or only keeping the maximal response across all alignments of a 2D template at every point of the surface, as done in previous works, we show how information across all rotations can be kept across different layers of the neural network. Our construction, which we call multi-directional geodesic convolution, or directional convolution for short, allows, in particular, to propagate and relate directional information across layers and thus different regions on the shape. We first define directional convolution in the continuous setting, prove its key properties and then show how it can be implemented in practice, for shapes represented as triangle meshes. We evaluate directional convolution in a wide variety of learning scenarios ranging from classification of signals on surfaces, to shape segmentation and shape matching, where we show a significant improvement over several baselines.
This paper presents an algorithm for the efficient approximation of the saddle-extremum persistence diagram of a scalar field. Vidal et al. introduced recently a fast algorithm for such an approximation (by interrupting a progressive computation framework). However, no theoretical guarantee was provided regarding its approximation quality. In this work, we revisit the progressive framework of Vidal et al. and we introduce in contrast a novel approximation algorithm, with a user controlled approximation error, specifically, on the Bottleneck distance to the exact solution. Our approach is based on a hierarchical representation of the input data, and relies on local simplifications of the scalar field to accelerate the computation, while maintaining a controlled bound on the output error. The locality of our approach enables further speedups thanks to shared memory parallelism. Experiments conducted on real life datasets show that for a mild error tolerance (5% relative Bottleneck distance), our approach improves runtime performance by 18% on average (and up to 48% on large, noisy datasets) in comparison to standard, exact, publicly available implementations. In addition to the strong guarantees on its approximation error, we show that our algorithm also provides in practice outputs which are on average 5 times more accurate (in terms of the L2-Wasserstein distance) than a naive approximation baseline. We illustrate the utility of our approach for interactive data exploration and we document visualization strategies for conveying the uncertainty related to our approximations.
An efficient computer algorithm is described for the perspective drawing of a wide class of surfaces. The class includes surfaces corresponding lo single-valued, continuous functions which are defined over rectangular domains. The algorithm automatically computes and eliminates hidden lines. The number of computations in the algorithm grows linearly with the number of sample points on the surface to be drawn. An analysis of the algorithm is presented, and extensions lo certain multi-valued functions are indicated. The algorithm is implemented and tested on .Net 2.0 platform that left interactive use. Running times are found lo be exceedingly efficient for visualization, where interaction on-line and view-point control, enables effective and rapid examination of a surfaces from many perspectives.
Humanitys interest in manufacturing silica-glass objects extends back over three thousand years. Silica glass is resistant to heating and exposure to many chemicals, and it is transparent in a wide wavelength range. Due to these qualities, silica glass is used for a variety of applications that shape our modern life, such as optical fibers in medicine and telecommunications. However, its chemical stability and brittleness impede the structuring of silica glass, especially on the small scale. Techniques for three-dimensional (3D) printing of silica glass, such as stereolithography and direct ink writing, have recently been demonstrated, but the achievable minimum feature size is several tens of micrometers. While submicrometric silica-glass structures have many interesting applications, for example in micro-optics, they are currently manufactured using lithography techniques, which severely limits the 3D shapes that can be realized. Here, we show 3D printing of optically transparent silica-glass structures with submicrometric features. We achieve this by cross-linking hydrogen silsesquioxane to silica glass using nonlinear absorption of laser light followed by the dissolution of the unexposed material. We print a functional microtoroid resonator with out-of-plane fiber couplers to demonstrate the new possibilities for designing and building silica-glass microdevices in 3D.