Do you want to publish a course? Click here

The relationship between fine galaxy stellar morphology and star formation activity in cosmological simulations: a deep learning view

114   0   0.0 ( 0 )
 Added by Lorenzo Zanisi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The agreement between the morphology of simulated and real galaxies, and the way the morphological types are distributed across galaxy scaling relations are important probes of our knowledge of galaxy formation physics. Here we propose an unsupervised deep learning approach to perform a stringent test of the fine morphological structure of galaxies coming from the Illustris and IllustrisTNG (TNG100 and TNG50) simulations against observations from a subsample of the Sloan Digital Sky Survey. Our framework is based on PixelCNN, an autoregressive model for image generation with an explicit likelihood. We adopt a strategy that combines the output of two PixelCNN networks in a metric that isolates the fine morphological details of galaxies from the sky background. We are able to emph{quantitatively} identify the improvements of IllustrisTNG, particularly in the high-resolution TNG50 run, over the original Illustris. However, we find that the fine details of galaxy structure are still different between observed and simulated galaxies. This difference is driven by small, more spheroidal, and quenched galaxies which are globally less accurate regardless of resolution and which have experienced little improvement between the three simulations explored. We speculate that this disagreement, that is less severe for quenched disky galaxies, may stem from a still too coarse numerical resolution, which struggles to properly capture the inner, dense regions of quenched spheroidal galaxies.



rate research

Read More

Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
237 - Mark Vogelsberger 2019
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.
Galaxy morphology and its evolution over the cosmic epoch hold important clues for understanding the regulation of star formation (SF). However, studying the relationship between morphology and SF has been hindered by the availability of consistent data at different redshifts. Our sample, combining CANDELS (0.8 < z < 2.5) and the GALEX-SDSS-WISE Legacy Catalog (GSWLC; z ~ 0), has physical parameters derived using consistent SED fitting with flexible dust attenuation laws. We adopt visual classifications from Kartaltepe et al. 2015 and expand them to z ~ 0 using SDSS images matching the physical resolution of CANDELS rest-frame optical images and deep FUV GALEX images matching the physical resolution of the CANDELS rest-frame FUV images. Our main finding is that disks with SF clumps at z ~ 0 make a similar fraction (~15%) of star-forming galaxies as at z ~ 2. The clumpy disk contribution to the SF budget peaks at z ~ 1, rather than z ~ 2, suggesting that the principal epoch of disk assembly continues to lower redshifts. Star-forming spheroids (blue nuggets), though less centrally concentrated than quenched spheroids, contribute significantly (~15%) to the SF budget at z ~ 1-2, suggesting that compaction precedes quenching. Among green valley and quiescent galaxies, the pure spheroid fraction drops since z ~ 1, whereas spheroids with disks (S0-like) become dominant. Mergers at or nearing coalescence are enhanced in SFR relative to the main sequence at all redshifts by a factor of ~2, but contribute $lesssim$5% to the SF budget, with their contribution remaining small above the main sequence.
We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGN with $10^{41}<L_mathrm{X}<10^{44} $ erg s$^{-1}$ at $0.2 < z < 1.2$ in the PRIMUS redshift survey. We find AGN in galaxies with a wide range of SFR at a given $L_X$. We do not find a significant correlation between SFR and the observed instantaneous $L_X$ for star forming AGN host galaxies. However, there is a weak but significant correlation between the mean $L_mathrm{X}$ and SFR of detected AGN in star forming galaxies, which likely reflects that $L_mathrm{X}$ varies on shorter timescales than SFR. We find no correlation between stellar mass and $L_mathrm{X}$ within the AGN population. Within both populations of star forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star forming galaxy $sim2-3$ more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGN, but AGN are often hosted by quiescent galaxies.
245 - Romeel Dave 2011
We examine the growth of the stellar content of galaxies from z=3-0 in cosmological hydrodynamic simulations incorporating parameterised galactic outflows. Without outflows, galaxies overproduce stellar masses (M*) and star formation rates (SFRs) compared to observations. Winds introduce a three-tier form for the galaxy stellar mass and star formation rate functions, where the middle tier depends on differential (i.e. mass-dependent) recycling of ejected wind material back into galaxies. A tight M*-SFR relation is a generic outcome of all these simulations, and its evolution is well-described as being powered by cold accretion, although current observations at z>2 suggest that star formation in small early galaxies must be highly suppressed. Roughly one-third of z=0 galaxies at masses below M^* are satellites, and star formation in satellites is not much burstier than in centrals. All models fail to suppress star formation and stellar mass growth in massive galaxies at z<2, indicating the need for an external quenching mechanism such as black hole feedback. All models also fail to produce dwarfs as young and rapidly star-forming as observed. An outflow model following scalings expected for momentum-driven winds broadly matches observed galaxy evolution around M^* from z=0-3, which is a significant success since these galaxies dominate cosmic star formation, but the failures at higher and lower masses highlight the challenges still faced by this class of models. We argue that central star-forming galaxies are well-described as living in a slowly-evolving equilibrium between inflows from gravity and recycled winds, star formation, and strong and ubiquitous outflows that regulate how much inflow forms into stars. Star-forming galaxy evolution is thus primarily governed by the continual cycling of baryons between galaxies and intergalactic gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا