Do you want to publish a course? Click here

Enhancing strength of MICP-treated sandy soils: from micro to macro scale

194   0   0.0 ( 0 )
 Added by Yuze Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microbial-Induced Calcium carbonate (CaCO3) Precipitation (MICP) has been extensively studied for soil improvement in geotechnical engineering. The properties of calcium carbonate crystals such as size and quantity affect the strength of MICP-treated soil. This study demonstrates how the data from micro-scale microfluidic experiments that examine the effects of injection intervals and concentration of cementation solution on the properties of calcium carbonate crystals can be used to optimise the MICP treatment of macro-scale sand soil column experiments for effective strength enhancement. The micro-scale experiments reveal that, due to Ostwald ripening, longer injection intervals allow smaller crystals to dissolve and reprecipitate into larger crystals regardless of the concentration of cementation solution. By applying this finding in the macro-scale experiments, a treatment duration of 6 days, where injection intervals were 12 h, 24 h, and 48 h for cementation solution concentration of 0.25 M, 0.5 M and 1.0 M, respectively, was long enough to precipitate crystals large enough for effective strength enhancement. This was indicated by the fact that significantly higher soil strength and larger crystals were produced when treatment duration increased from 3 days to 6 days, but not when it increased from 6 days to 12 days.



rate research

Read More

68 - Quanji Cai 2018
This paper deals with simulation of flow and transport in porous media such as transport of groundwater contaminants. We first discuss how macro scale equations are derived and which terms have to be closed by models. The transport of tracers is strongly influenced by pore scale velocity structure and large scale inhomogeneities in the permeability field. The velocity structure on the pore scale is investigated by direct numerical simulations of the 3D velocity field in a random sphere pack. The velocity probability density functions are strongly skewed, including some negative velocities. The large probability for very small velocities might be the reason for non-Fickian dispersion in the initial phase of contaminant transport. We present a method to determine large scale distributions of the permeability field from point-wise velocity measurements. The adjoint-based optimisation algorithm delivers fully satisfying agreement between input and estimated permeability fields. Finally numerical methods for convection dominated tracer transports are investigated from a theoretical point of view. It is shown that high order Finite Element Methods can reduce or even eliminate non-physical oscillations in the solution without introducing additional numerical diffusivity.
94 - Peng Wang , Wei Chu , Wenbo Li 2019
Three-dimensional (3D) printing has allowed for production of geometrically complex 3D objects with extreme flexibility, which is currently undergoing rapid expansions in terms of materials, functionalities, as well as areas of application. When attempting to print 3D microstructures in glass, femtosecond laser induced chemical etching (FLICE) has proved itself a powerful approach. Here, we demonstrate fabrication of macro-scale 3D glass objects of large heights up to ~3.8 cm with a well-balanced (i.e., lateral vs longitudinal) spatial resolution of ~20 {mu}m. The remarkable accomplishment is achieved by revealing an unexplored regime in the interaction of ultrafast laser pulses with fused silica which results in aberration-free focusing of the laser pulses deeply inside fused silica.
Microbial-Induced Carbonate Precipitation (MICP) is an innovative ground improvement technique which can enhance the strength and stiffness of soils, and can also control their hydraulic conductivity. These engineering properties of MICP-treated soils are affected by particle-scale behaviour of the precipitated carbonate, i.e. composition, amount and distribution, which are controlled by the MICP process occurring at the particle-scale. In this study, we designed and fabricated a microfluidic chip to improve our understanding of MICP at particle-scale by observing the behaviour of bacteria and CaCO3 crystals during this process. We found that bacteria became evenly distributed throughout the microfluidic chip after the injection of bacterial suspension, grew during bacterial settling, and detached during the injection of cementation solution. Bacteria aggregated during the cementation solution injection, and CaCO3 crystals formed at narrow pore throats or open pore bodies either during or after cementation solution injections.
396 - R. Ghobadi , S. Kumar , B. Pepper 2014
We propose to create and detect opto-mechanical entanglement by storing one component of an entangled state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as recently demonstrated experimentally, one can then create opto-mechanical entangled states where the components of the superposition are macroscopically different. We apply this general approach to two-mode squeezed states where one mode has undergone a large displacement. Based on an analysis of the relevant experimental imperfections, the scheme appears feasible with current technology.
Schroedingers famous thought experiment involves a (macroscopic) cat whose quantum state becomes entangled with that of a (microscopic) decaying nucleus. The creation of such micro-macro entanglement is currently being pursued in several fields, including atomic ensembles, superconducting circuits, electro-mechanical and opto-mechanical systems. For purely optical systems, there have been several proposals to create micro-macro entanglement by greatly amplifying one half of an initial microscopic entangled state of light, but experimental attempts have so far been inconclusive. Here we experimentally demonstrate micro-macro entanglement of light. The macro system involves over a hundred million photons, while the micro system is at the single-photon level. We show that microscopic differences (in field quadrature measurements) on one side are correlated with macroscopic differences (in the photon number variance) on the other side. On the other hand, we demonstrate entanglement by bringing the macroscopic state back to the single-photon level and performing full quantum state tomography of the final state. Our results show that it is possible to create and demonstrate micro-macro entanglement for unexpectedly large photon numbers. Schroedingers thought experiment was originally intended to convey the absurdity of applying quantum mechanics to macroscopic objects. Today many quantum physicists believe that quantum principles in fact apply on all scales. By combining the present approach with other (e.g. mechanical) systems, or by applying its basic ideas in different contexts, it may be possible to bring quantum effects ever closer to our everyday experience.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا