Do you want to publish a course? Click here

Deep Probabilistic Accelerated Evaluation: A Robust Certifiable Rare-Event Simulation Methodology for Black-Box Safety-Critical Systems

69   0   0.0 ( 0 )
 Added by Mansur Arief
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Evaluating the reliability of intelligent physical systems against rare safety-critical events poses a huge testing burden for real-world applications. Simulation provides a useful platform to evaluate the extremal risks of these systems before their deployments. Importance Sampling (IS), while proven to be powerful for rare-event simulation, faces challenges in handling these learning-based systems due to their black-box nature that fundamentally undermines its efficiency guarantee, which can lead to under-estimation without diagnostically detected. We propose a framework called Deep Probabilistic Accelerated Evaluation (Deep-PrAE) to design statistically guaranteed IS, by converting black-box samplers that are versatile but could lack guarantees, into one with what we call a relaxed efficiency certificate that allows accurate estimation of bounds on the safety-critical event probability. We present the theory of Deep-PrAE that combines the dominating point concept with rare-event set learning via deep neural network classifiers, and demonstrate its effectiveness in numerical examples including the safety-testing of an intelligent driving algorithm.



rate research

Read More

Increasingly sophisticated mathematical modelling processes from Machine Learning are being used to analyse complex data. However, the performance and explainability of these models within practical critical systems requires a rigorous and continuous verification of their safe utilisation. Working towards addressing this challenge, this paper presents a principled novel safety argument framework for critical systems that utilise deep neural networks. The approach allows various forms of predictions, e.g., future reliability of passing some demands, or confidence on a required reliability level. It is supported by a Bayesian analysis using operational data and the recent verification and validation techniques for deep learning. The prediction is conservative -- it starts with partial prior knowledge obtained from lifecycle activities and then determines the worst-case prediction. Open challenges are also identified.
134 - Xinyi Chen , Elad Hazan 2020
We consider the problem of controlling an unknown linear time-invariant dynamical system from a single chain of black-box interactions, with no access to resets or offline simulation. Under the assumption that the system is controllable, we give the first efficient algorithm that is capable of attaining sublinear regret in a single trajectory under the setting of online nonstochastic control. This resolves an open problem on the stochastic LQR problem, and in a more challenging setting that allows for adversarial perturbations and adversarially chosen and changing convex loss functions. We give finite-time regret bounds for our algorithm on the order of $2^{tilde{O}(mathcal{L})} + tilde{O}(text{poly}(mathcal{L}) T^{2/3})$ for general nonstochastic control, and $2^{tilde{O}(mathcal{L})} + tilde{O}(text{poly}(mathcal{L}) sqrt{T})$ for black-box LQR, where $mathcal{L}$ is the system size which is an upper bound on the dimension. The crucial step is a new system identification method that is robust to adversarial noise, but incurs exponential cost. To complete the picture, we investigate the complexity of the online black-box control problem, and give a matching lower bound of $2^{Omega(mathcal{L})}$ on the regret, showing that the additional exponential cost is inevitable. This lower bound holds even in the noiseless setting, and applies to any, randomized or deterministic, black-box control method.
We study probabilistic safety for Bayesian Neural Networks (BNNs) under adversarial input perturbations. Given a compact set of input points, $T subseteq mathbb{R}^m$, we study the probability w.r.t. the BNN posterior that all the points in $T$ are mapped to the same region $S$ in the output space. In particular, this can be used to evaluate the probability that a network sampled from the BNN is vulnerable to adversarial attacks. We rely on relaxation techniques from non-convex optimization to develop a method for computing a lower bound on probabilistic safety for BNNs, deriving explicit procedures for the case of interval and linear function propagation techniques. We apply our methods to BNNs trained on a regression task, airborne collision avoidance, and MNIST, empirically showing that our approach allows one to certify probabilistic safety of BNNs with millions of parameters.
Autonomous and semi-autonomous systems for safety-critical applications require rigorous testing before deployment. Due to the complexity of these systems, formal verification may be impossible and real-world testing may be dangerous during development. Therefore, simulation-based techniques have been developed that treat the system under test as a black box during testing. Safety validation tasks include finding disturbances to the system that cause it to fail (falsification), finding the most-likely failure, and estimating the probability that the system fails. Motivated by the prevalence of safety-critical artificial intelligence, this work provides a survey of state-of-the-art safety validation techniques with a focus on applied algorithms and their modifications for the safety validation problem. We present and discuss algorithms in the domains of optimization, path planning, reinforcement learning, and importance sampling. Problem decomposition techniques are presented to help scale algorithms to large state spaces, and a brief overview of safety-critical applications is given, including autonomous vehicles and aircraft collision avoidance systems. Finally, we present a survey of existing academic and commercially available safety validation tools.
Most existing black-box optimization methods assume that all variables in the system being optimized have equal cost and can change freely at each iteration. However, in many real world systems, inputs are passed through a sequence of different operations or modules, making variables in earlier stages of processing more costly to update. Such structure imposes a cost on switching variables in early parts of a data processing pipeline. In this work, we propose a new algorithm for switch cost-aware optimization called Lazy Modular Bayesian Optimization (LaMBO). This method efficiently identifies the global optimum while minimizing cost through a passive change of variables in early modules. The method is theoretical grounded and achieves vanishing regret when augmented with switching cost. We apply LaMBO to multiple synthetic functions and a three-stage image segmentation pipeline used in a neuroscience application, where we obtain promising improvements over prevailing cost-aware Bayesian optimization algorithms. Our results demonstrate that LaMBO is an effective strategy for black-box optimization that is capable of minimizing switching costs in modular systems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا