Do you want to publish a course? Click here

Dominate or Delete: Decentralized Competing Bandits in Serial Dictatorship

341   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Online learning in a two-sided matching market, with demand side agents continuously competing to be matched with supply side (arms), abstracts the complex interactions under partial information on matching platforms (e.g. UpWork, TaskRabbit). We study the decentralized serial dictatorship setting, a two-sided matching market where the demand side agents have unknown and heterogeneous valuation over the supply side (arms), while the arms have known uniform preference over the demand side (agents). We design the first decentralized algorithm -- UCB with Decentralized Dominant-arm Deletion (UCB-D3), for the agents, that does not require any knowledge of reward gaps or time horizon. UCB-D3 works in phases, where in each phase, agents delete emph{dominated arms} -- the arms preferred by higher ranked agents, and play only from the non-dominated arms according to the UCB. At the end of the phase, agents broadcast in a decentralized fashion, their estimated preferred arms through {em pure exploitation}. We prove both, a new regret lower bound for the decentralized serial dictatorship model, and that UCB-D3 is order optimal.

rate research

Read More

We study contextual bandits with ancillary constraints on resources, which are common in real-world applications such as choosing ads or dynamic pricing of items. We design the first algorithm for solving these problems that handles constrained resources other than time, and improves over a trivial reduction to the non-contextual case. We consider very general settings for both contextual bandits (arbitrary policy sets, e.g. Dudik et al. (UAI11)) and bandits with resource constraints (bandits with knapsacks, Badanidiyuru et al. (FOCS13)), and prove a regret guarantee with near-optimal statistical properties.
We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it can be adversarially changed to trick the algorithm, e.g., click fraud, fake reviews and email spam. The goal of this model is to encourage the design of bandit algorithms that (i) work well in mixed adversarial and stochastic models, and (ii) whose performance deteriorates gracefully as we move from fully stochastic to fully adversarial models. In our model, the rewards for all arms are initially drawn from a distribution and are then altered by an adaptive adversary. We provide a simple algorithm whose performance gracefully degrades with the total corruption the adversary injected in the data, measured by the sum across rounds of the biggest alteration the adversary made in the data in that round; this total corruption is denoted by $C$. Our algorithm provides a guarantee that retains the optimal guarantee (up to a logarithmic term) if the input is stochastic and whose performance degrades linearly to the amount of corruption $C$, while crucially being agnostic to it. We also provide a lower bound showing that this linear degradation is necessary if the algorithm achieves optimal performance in the stochastic setting (the lower bound works even for a known amount of corruption, a special case in which our algorithm achieves optimal performance without the extra logarithm).
Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action spaces such as the [0,1] interval, where similar actions are guaranteed to have similar rewards. A central theme here is the adaptive discretization of the action space, which gradually ``zooms in on the more promising regions thereof. The goal is to take advantage of ``nicer problem instances, while retaining near-optimal worst-case performance. While the stochastic version of the problem is well-understood, the general version with adversarial rewards is not. We provide the first algorithm for adaptive discretization in the adversarial version, and derive instance-dependent regret bounds. In particular, we recover the worst-case optimal regret bound for the adversarial version, and the instance-dependent regret bound for the stochastic version. Further, an application of our algorithm to dynamic pricing (where a seller repeatedly adjusts prices for a product) enjoys these regret bounds without any smoothness assumptions.
In recent years, federated learning has been embraced as an approach for bringing about collaboration across large populations of learning agents. However, little is known about how collaboration protocols should take agents incentives into account when allocating individual resources for communal learning in order to maintain such collaborations. Inspired by game theoretic notions, this paper introduces a framework for incentive-aware learning and data sharing in federated learning. Our stable and envy-free equilibria capture notions of collaboration in the presence of agents interested in meeting their learning objectives while keeping their own sample collection burden low. For example, in an envy-free equilibrium, no agent would wish to swap their sampling burden with any other agent and in a stable equilibrium, no agent would wish to unilaterally reduce their sampling burden. In addition to formalizing this framework, our contributions include characterizing the structural properties of such equilibria, proving when they exist, and showing how they can be computed. Furthermore, we compare the sample complexity of incentive-aware collaboration with that of optimal collaboration when one ignores agents incentives.
We study a decentralized cooperative stochastic multi-armed bandit problem with $K$ arms on a network of $N$ agents. In our model, the reward distribution of each arm is the same for each agent and rewards are drawn independently across agents and time steps. In each round, each agent chooses an arm to play and subsequently sends a message to her neighbors. The goal is to minimize the overall regret of the entire network. We design a fully decentralized algorithm that uses an accelerated consensus procedure to compute (delayed) estimates of the average of rewards obtained by all the agents for each arm, and then uses an upper confidence bound (UCB) algorithm that accounts for the delay and error of the estimates. We analyze the regret of our algorithm and also provide a lower bound. The regret is bounded by the optimal centralized regret plus a natural and simple term depending on the spectral gap of the communication matrix. Our algorithm is simpler to analyze than those proposed in prior work and it achieves better regret bounds, while requiring less information about the underlying network. It also performs better empirically.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا