Extracting Non-Gaussian Governing Laws from Data on Mean Exit Time


Abstract in English

Motivated by the existing difficulties in establishing mathematical models and in observing the system state time series for some complex systems, especially for those driven by non-Gaussian Levy motion, we devise a method for extracting non-Gaussian governing laws with observations only on mean exit time. It is feasible to observe mean exit time for certain complex systems. With the observations, a sparse regression technique in the least squares sense is utilized to obtain the approximated function expression of mean exit time. Then, we learn the generator and further identify the stochastic differential equations through solving an inverse problem for a nonlocal partial differential equation and minimizing an error objective function. Finally, we verify the efficacy of the proposed method by three examples with the aid of the simulated data from the original systems. Results show that the method can apply to not only the stochastic dynamical systems driven by Gaussian Brownian motion but also those driven by non-Gaussian Levy motion, including those systems with complex rational drift.

Download