Feature Expansive Reward Learning: Rethinking Human Input


Abstract in English

When a person is not satisfied with how a robot performs a task, they can intervene to correct it. Reward learning methods enable the robot to adapt its reward function online based on such human input, but they rely on handcrafted features. When the correction cannot be explained by these features, recent work in deep Inverse Reinforcement Learning (IRL) suggests that the robot could ask for task demonstrations and recover a reward defined over the raw state space. Our insight is that rather than implicitly learning about the missing feature(s) from demonstrations, the robot should instead ask for data that explicitly teaches it about what it is missing. We introduce a new type of human input in which the person guides the robot from states where the feature being taught is highly expressed to states where it is not. We propose an algorithm for learning the feature from the raw state space and integrating it into the reward function. By focusing the human input on the missing feature, our method decreases sample complexity and improves generalization of the learned reward over the above deep IRL baseline. We show this in experiments with a physical 7DOF robot manipulator, as well as in a user study conducted in a simulated environment.

Download