Do you want to publish a course? Click here

K-CLASH: Strangulation and Ram Pressure Stripping in Galaxy Cluster Members at 0.3 < z < 0.6

141   0   0.0 ( 0 )
 Added by Sam Vaughan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy clusters have long been theorised to quench the star-formation of their members. This study uses integral-field unit observations from the $K$-band Multi-Object Spectrograph (KMOS) - Cluster Lensing And Supernova survey with Hubble (CLASH) survey (K-CLASH) to search for evidence of quenching in massive galaxy clusters at redshifts $0.3<z<0.6$. We first construct mass-matched samples of exclusively star-forming cluster and field galaxies, then investigate the spatial extent of their H$alpha$ emission and study their interstellar medium conditions using emission line ratios. The average ratio of H$alpha$ half-light radius to optical half-light radius ($r_{rm{e},rm{H}alpha}/r_{rm{e},R_c}$) for all galaxies is $1.14pm0.06$, showing that star formation is taking place throughout stellar discs at these redshifts. However, on average, cluster galaxies have a smaller $r_{rm{e},rm{H}alpha}/r_{rm{e},R_c}$ ratio than field galaxies: $langle r_{rm{e},rm{H}alpha}/r_{rm{e},R_c}rangle = 0.96pm0.09$ compared to $1.22pm0.08$ (smaller at a 98% credibility level). These values are uncorrected for the wavelength difference between H$alpha$ emission and $R_c$-band stellar light, but implementing such a correction only reinforces our results. We also show that whilst the cluster and field samples follow indistinguishable mass-metallicity (MZ) relations, the residuals around the MZ relation of cluster members correlate with cluster-centric distance; galaxies residing closer to the cluster centre tend to have enhanced metallicities (significant at the 2.6$sigma$ level). Finally, in contrast to previous studies, we find no significant differences in electron number density between the cluster and field galaxies. We use simple chemical evolution models to conclude that the effects of disc strangulation and ram-pressure stripping can quantitatively explain our observations.

rate research

Read More

301 - Jesper Rasmussen 2008
Galaxies in compact groups tend to be deficient in neutral hydrogen compared to isolated galaxies of similar optical properties. In order to investigate the role played by a hot intragroup medium (IGM) for the removal and destruction of HI in these systems, we have performed a Chandra and XMM-Newton study of eight of the most HI deficient Hickson compact groups. Diffuse X-ray emission associated with an IGM is detected in four of the groups, suggesting that galaxy-IGM interactions are not the dominant mechanism driving cold gas out of the group members. No clear evidence is seen for any of the members being currently stripped of any hot gas, nor for galaxies to show enhanced nuclear X-ray activity in the X-ray bright or most HI deficient groups. Combining the inferred IGM distributions with analytical models of representative disc galaxies orbiting within each group, we estimate the HI mass loss due to ram pressure and viscous stripping. While these processes are generally insufficient to explain observed HI deficiencies, they could still be important for HI removal in the X-ray bright groups, potentially removing more than half of the ISM in the X-ray bright HCG 97. Ram pressure may also have facilitated strangulation through the removal of galactic coronal gas. In X-ray undetected groups, tidal interactions could be playing a prominent role, but it remains an open question whether they can fully account for the observed HI deficiencies.
124 - Alfred L. Tiley 2020
We present the KMOS-CLASH (K-CLASH) survey, a K-band Multi-Object Spectrograph (KMOS) survey of the spatially-resolved gas properties and kinematics of 191 (predominantly blue) H$alpha$-detected galaxies at $0.2 lesssim z lesssim 0.6$ in field and cluster environments. K-CLASH targets galaxies in four Cluster Lensing And Supernova survey with Hubble (CLASH) fields in the KMOS $IZ$-band, over $7$ radius ($approx2$-$3$ Mpc) fields-of-view. K-CLASH aims to study the transition of star-forming galaxies from turbulent, highly star-forming disc-like and peculiar systems at $zapprox1$-$3$, to the comparatively quiescent, ordered late-type galaxies at $zapprox0$, and to examine the role of clusters in the build-up of the red sequence since $zapprox1$. In this paper, we describe the K-CLASH survey, present the sample, and provide an overview of the K-CLASH galaxy properties. We demonstrate that our sample comprises star-forming galaxies typical of their stellar masses and epochs, residing both in field and cluster environments. We conclude K-CLASH provides an ideal sample to bridge the gap between existing large integral-field spectroscopy surveys at higher and lower redshifts. We find that star-forming K-CLASH cluster galaxies at intermediate redshifts have systematically lower stellar masses than their star-forming counterparts in the field, hinting at possible downsizing scenarios of galaxy growth in clusters at these epochs. We measure no difference between the star-formation rates of H$alpha$-detected, star-forming galaxies in either environment after accounting for stellar mass, suggesting that cluster quenching occurs very rapidly during the epochs probed by K-CLASH, or that star-forming K-CLASH galaxies in clusters have only recently arrived there, with insufficient time elapsed for quenching to have occured.
We report the detection of H$alpha$ trails behind three new intermediate-mass irregular galaxies in the NW outskirts of the nearby cluster of galaxies Abell 1656 (Coma). Hints that these galaxies possess an extended component were found in earlier, deeper H$alpha$ observations carried out with the Subaru telescope. However the lack of a simultaneous $r$-band exposure, together with the presence of strong stellar ghosts in the Subaru images, prevented us from quantifying the detections. We therefore devoted one full night of H$alpha$ observation to each of the three galaxies using the San Pedro Martir 2.1m telescope. One-sided tails of H$alpha$ emission of 10-20 kpc projected size were detected, suggesting an ongoing ram pressure stripping event. We added these 3 new sources of extended ionized gas (EIG) added to the 12 found by Yagi et al. (2010), NGC 4848 (Fossati et al. 2012), and NGC 4921 whose ram pressure stripping is certified by HI asymmetry. This brings the number sources with H$alpha$ trails to 17 gaseous tails out of 27 (63 %) late-type galaxies (LTG) galaxies members of the Coma cluster with direct evidence of ram pressure stripping. The 27 LTG galaxies, among these the 17 with extended H$alpha$ tails, have kinematic properties that are different from the rest of the early-type galaxy (ETG) population of the c ore of the Coma cluster, as they deviate in the phase-space diagram $Delta$V/$sigma$ versus $r/R_{200}$.
142 - B. Vollmer 2009
Ram pressure stripping of the multiphase ISM is studied in the perturbed Virgo cluster spiral galaxy NGC 4438. This galaxy underwent a tidal interaction ~100 Myr ago and is now strongly affected by ram pressure stripping. Deep VLA radio continuum observations at 6 and 20 cm are presented. We detect prominent extraplanar emission to the west of the galactic center, which extends twice as far as the other tracers of extraplanar material. The spectral index of the extraplanar emission does not steepen with increasing distance from the galaxy. This implies in situ re-acceleration of relativistic electrons. The comparison with multiwavelength observations shows that the magnetic field and the warm ionized interstellar medium traced by Halpha emission are closely linked. The kinematics of the northern extraplanar Halpha emission, which is ascribed to star formation, follow those of the extraplanar CO emission. In the western and southern extraplanar regions, the Halpha measured velocities are greater than those of the CO lines. We suggest that the ionized gas of this region is excited by ram pressure. The spatial and velocity offsets are consistent with a scenario where the diffuse ionized gas is more efficiently pushed by ram pressure stripping than the neutral gas. We suggest that the recently found radio-deficient regions compared to 24 mum emission are due to this difference in stripping efficiency.
Through an ongoing MUSE program dedicated to study gas removal processes in galaxies (GAs Stripping Phenomena in galaxies with MUSE, GASP), we have obtained deep and wide integral field spectroscopy of the galaxy JO171. This galaxy resembles the Hoags galaxy, one of the most spectacular examples of ring galaxies, characterized by a completely detached ring of young stars surrounding a central old spheroid. At odds with the isolated Hoags galaxy, JO171 is part of a dense environment, the cluster Abell 3667, which is causing gas stripping along tentacles. Moreover, its ring counter-rotates with respect to the central spheroid. The joint analysis of the stellar populations and the gas/stellar kinematics shows that the origin of the ring was not due to an internal mechanism, but was related to a gas accretion event that happened in the distant past, prior to accretion onto Abell 3667, most probably within a filament. More recently, since infall in the cluster, the gas in the ring has been stripped by ram- pressure, causing the quenching of star formation in the stripped half of the ring. This is the first observed case of ram pressure stripping in action in a ring galaxy, and MUSE observations are able to reveal both of the events (accretion and stripping) that caused dramatic transformations in this galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا