Do you want to publish a course? Click here

Optimal Extensions of Resource Measures and their Applications

69   0   0.0 ( 0 )
 Added by Gilad Gour
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We develop a framework to extend resource measures from one domain to a larger one. We find that all extensions of resource measures are bounded between two quantities that we call the minimal and maximal extensions. We discuss various applications of our framework. We show that any relative entropy (i.e. an additive function on pairs of quantum states that satisfies the data processing inequality) must be bounded by the min and max relative entropies. We prove that the generalized trace distance, the generalized fidelity, and the purified distance are optimal extensions. And in entanglement theory we introduce a new technique to extend pure state entanglement measures to mixed bipartite states.



rate research

Read More

Quantum channel estimation and discrimination are fundamentally related information processing tasks of interest in quantum information science. In this paper, we analyze these tasks by employing the right logarithmic derivative Fisher information and the geometric Renyi relative entropy, respectively, and we also identify connections between these distinguishability measures. A key result of our paper is that a chain-rule property holds for the right logarithmic derivative Fisher information and the geometric Renyi relative entropy for the interval $alphain(0,1) $ of the Renyi parameter $alpha$. In channel estimation, these results imply a condition for the unattainability of Heisenberg scaling, while in channel discrimination, they lead to improved bounds on error rates in the Chernoff and Hoeffding error exponent settings. More generally, we introduce the amortized quantum Fisher information as a conceptual framework for analyzing general sequential protocols that estimate a parameter encoded in a quantum channel, and we use this framework, beyond the aforementioned application, to show that Heisenberg scaling is not possible when a parameter is encoded in a classical-quantum channel. We then identify a number of other conceptual and technical connections between the tasks of estimation and discrimination and the distinguishability measures involved in analyzing each. As part of this work, we present a detailed overview of the geometric Renyi relative entropy of quantum states and channels, as well as its properties, which may be of independent interest.
We develop a resource theory of symmetric distinguishability, the fundamental objects of which are elementary quantum information sources, i.e., sources that emit one of two possible quantum states with given prior probabilities. Such a source can be represented by a classical-quantum state of a composite system $XA$, corresponding to an ensemble of two quantum states, with $X$ being classical and $A$ being quantum. We study the resource theory for two different classes of free operations: $(i)$ ${rm{CPTP}}_A$, which consists of quantum channels acting only on $A$, and $(ii)$ conditional doubly stochastic (CDS) maps acting on $XA$. We introduce the notion of symmetric distinguishability of an elementary source and prove that it is a monotone under both these classes of free operations. We study the tasks of distillation and dilution of symmetric distinguishability, both in the one-shot and asymptotic regimes. We prove that in the asymptotic regime, the optimal rate of converting one elementary source to another is equal to the ratio of their quantum Chernoff divergences, under both these classes of free operations. This imparts a new operational interpretation to the quantum Chernoff divergence. We also obtain interesting operational interpretations of the Thompson metric, in the context of the dilution of symmetric distinguishability.
Quantum resource theories (QRTs) provide a unified theoretical framework for understanding inherent quantum-mechanical properties that serve as resources in quantum information processing, but resources motivated by physics may possess intractable mathematical structure to analyze, such as non-uniqueness of maximally resourceful states, lack of convexity, and infinite dimension. We investigate state conversion and resource measures in general QRTs under minimal assumptions to figure out universal properties of physically motivated quantum resources that may have such intractable mathematical structure. In the general setting, we prove the existence of maximally resourceful states in one-shot state conversion. Also analyzing asymptotic state conversion, we discover catalytic replication of quantum resources, where a resource state is infinitely replicable by free operations. In QRTs without assuming uniqueness of maximally resourceful states, we formulate the tasks of distillation and formation of quantum resources, and introduce distillable resource and resource cost based on the distillation and the formation, respectively. Furthermore, we introduce consistent resource measures that quantify the amount of quantum resources without contradicting the rate of state conversion even in QRTs with non-unique maximally resourceful states. Progressing beyond the previous work showing a uniqueness theorem for additive resource measures, we prove the corresponding uniqueness inequality for the consistent resource measures; that is, consistent resource measures of a quantum state take values between the distillable resource and the resource cost of the state. These formulations and results establish a foundation of QRTs applicable to mathematically intractable but physically motivated quantum resources in a unified way.
We consider sequential hypothesis testing between two quantum states using adaptive and non-adaptive strategies. In this setting, samples of an unknown state are requested sequentially and a decision to either continue or to accept one of the two hypotheses is made after each test. Under the constraint that the number of samples is bounded, either in expectation or with high probability, we exhibit adaptive strategies that minimize both types of misidentification errors. Namely, we show that these errors decrease exponentially (in the stopping time) with decay rates given by the measured relative entropies between the two states. Moreover, if we allow joint measurements on multiple samples, the rates are increased to the respective quantum relative entropies. We also fully characterize the achievable error exponents for non-adaptive strategies and provide numerical evidence showing that adaptive measurements are necessary to achieve our bounds under some additional assumptions.
A series of recent works has shown that placing communication channels in a coherent superposition of alternative configurations can boost their ability to transmit information. Instances of this phenomenon are the advantages arising from the use of communication devices in a superposition of alternative causal orders, and those arising from the transmission of information along a superposition of alternative trajectories. The relation among these advantages has been the subject of recent debate, with some authors claiming that the advantages of the superposition of orders could be reproduced, and even surpassed, by other forms of superpositions. To shed light on this debate, we develop a general framework of resource theories of communication. In this framework, the resources are communication devices, and the allowed operations are (a) the placement of communication devices between the communicating parties, and (b) the connection of communication devices with local devices in the parties laboratories. The allowed operations are required to satisfy the minimal condition that they do not enable communication independently of the devices representing the initial resources. The resource-theoretic analysis reveals that the aforementioned criticisms on the superposition of causal orders were based on an uneven comparison between different types of quantum superpositions, exhibiting different operational features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا