MEMS Mirror Manufacturing and Testing for Innovative Space Applications


Abstract in English

In the framework of the GLARE-X (Geodesy via LAser Ranging from spacE X) project, led by INFN and funded for the years 2019-2021, aiming at significantly advance space geodesy, one shows the initial activities carried out in 2019 in order to manufacture and test adaptive mirrors. This specific article deals with manufacturing and surface quality measurements of the passive substrate of candidate MEMS (Micro-Electro-Mechanical Systems) mirrors for MRRs (Modulated RetroReflectors); further publications will show the active components. The project GLARE-X was approved by INFN for the years 2019-2021: it involves several institutions, including, amongst the other, INFN-LNF and FBK. GLARE-X is an innovative R&D activity, whose at large space geodesy goals will concern the following topics: inverse laser ranging (from a laser terminal in space down to a target on a planet), laser ranging for debris removal and iterative orbit correction, development of high-end ToF (Time of Flight) electronics, manufacturing and testing of MRRs for space, and provision of microreflectors for future NEO (Near Earth Orbit) cubesats. This specific article summarizes the manufacturing and surface quality measurements activities performed on the passive substrate of candidate MEMS mirrors, which will be in turn arranged into MRRs. The final active components, to be realized by 2021, will inherit the manufacturing characteristics chosen thanks to the presented (and further) testing campaigns, and will find suitable space application to NEO, Moon, and Mars devices, like, for example, cooperative and active lidar scatterers for laser altimetry and lasercomm support.

Download