Do you want to publish a course? Click here

Variational Principle for Spontaneous Wiggler and Synchrotron Radiation

112   0   0.0 ( 0 )
 Added by Andrew Charman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within the framework of a Hilbert space theory, we develop a maximum-``power variational principle (MPVP) applicable to classical spontaneous electromagnetic radiation from relativistic electron beams or other prescribed classical current sources. A simple proof is summarized for the case of three-dimensional fields propagating in vacuum, and specialization to the important case of paraxial optics is also discussed. The techniques have been developed to model undulator radiation from relativistic electron beams, but are more broadly applicable to synchrotron or other radiation problems, and may generalize to certain structured media. We illustrate applications with a simple, mostly analytic example involving spontaneous undulator radiation (requiring a few additional approximations), as well as a mostly numerical example involving x-ray generation via high harmonic generation in sequenced undulators



rate research

Read More

Within the framework of Hilbert space theory, we derive a maximum-power variational principle applicable to classical spontaneous radiation from prescribed harmonic current sources. Results are first derived in the paraxial limit, then appropriately generalized to non-paraxial situations. The techniques were developed within the context of undulator radiation from relativistic electron beams, but are more broadly applicable.
Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter $K$. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of $K$. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.
Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter $K$. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings.
For an oscillating electric dipole in the shape of a small, solid, uniformly-polarized, spherical particle, we compute the self-field as well as the radiated electromagnetic field in the surrounding free space. The assumed geometry enables us to obtain the exact solution of Maxwells equations as a function of the dipole moment, the sphere radius, and the oscillation frequency. The self field, which is responsible for the radiation resistance, does not introduce acausal or otherwise anomalous behavior into the dynamics of the bound electrical charges that comprise the dipole. Departure from causality, a well-known feature of the dynamical response of a charged particle to an externally applied force, is shown to arise when the charge is examined in isolation, namely in the absence of the restraining force of an equal but opposite charge that is inevitably present in a dipole radiator. Even in this case, the acausal behavior of the (free) charged particle appears to be rooted in the approximations used to arrive at an estimate of the self-force. When the exact expression of the self-force is used, our numerical analysis indicates that the impulse-response of the particle should remain causal.
A uniformly-charged spherical shell of radius $R$, mass $m$, and total electrical charge $q$, having an oscillatory angular velocity $Omega(t)$ around a fixed axis, is a model for a magnetic dipole that radiates an electromagnetic field into its surrounding free space at a fixed oscillation frequency $omega$. An exact solution of the Maxwell-Lorentz equations of classical electrodynamics yields the self-torque of radiation resistance acting on the spherical shell as a function of $R$, $q$, and $omega$. Invoking the Newtonian equation of motion for the shell, we relate its angular velocity $Omega(t)$ to an externally applied torque, and proceed to examine the response of the magnetic dipole to an impulsive torque applied at a given instant of time, say, $t=0$. The impulse response of the dipole is found to be causal down to extremely small values of $R$ (i.e., as $R to 0$) so long as the exact expression of the self-torque is used in the dynamical equation of motion of the spherical shell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا