Do you want to publish a course? Click here

The nearest discovered black hole is likely not in a triple configuration

110   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

HR 6819 was recently claimed to be a hierarchical triple system of a Be star in a wide orbit around an inner binary system of a black hole (BH) and a B III type star. We argue that this system is unlikely to be a hierarchical triple due to three reasons: (i) Given that this system is discovered in a magnitude limited Bright Star Catalog, the expected number of such systems in the Milky Way amounts to about $10^4$ while the estimate for the MW budget for such systems is between $10^2-10^3$ systems under generous assumptions. Such a large gap cannot be reconciled as it would otherwise likely overflow the MW budget for BHs; (ii) The dynamical stability of this system sets lower bounds on the orbital separation of the outer Be star, while it not being resolved by Gaia places an upper limit on its projected sky separation. We show that these two constraints would imply a narrow range for the outer orbit without resorting to geometrical fine-tuning; (iii) The triple system should have survived the stellar evolution prior to the formation of the BH in the inner binary. We perform numerical simulations starting with conservative initial conditions of this system and show that a small parameter space for BH progenitor stars mass loss, BH natal kicks, and initial orbital separation can reproduce HR 6819. Therefore, we propose this system is a chance superposition of a Be star with a binary.



rate research

Read More

We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the VLT. We detect a large number of donor star absorption features across a wide range of wavelengths spanning the H and K bands. Our 24 epochs covering a baseline of over 1 year permit us to determine a new binary ephemeris including a refined orbital period of P=33.85 +/- 0.16 d. The donor star radial velocity curves deliver a significantly improved determination of the donor semi-amplitude which is both accurate (K_2=126 +/- 1 km/s) and robust against choice of donor star template and spectral features used. We furthermore constrain the donor stars rotational broadening to vsini=21 +/-4 km/s, delivering a binary mass ratio of q=0.042 +/- 0.024. If we combine these new constraints with distance and inclination estimates derived from modelling the radio emission, a black hole mass of M_BH=10.1 +/- 0.6 M_sun is inferred, paired with an evolved mass donor of M_2=0.47 +/- 0.27 M_sun. Our analysis suggests a more typical black hole mass for GRS1915+105 rather than the unusually high values derived in the pioneering dynamical study by Greiner et al. (2001). Our data demonstrate that high-resolution infrared spectroscopy of obscured accreting binaries can deliver dynamical mass determinations with a precision on par with optical studies.
There are two outstanding issues regarding the neutron-star merger event GW170817: the nature of the compact remnant and the interstellar shock. The mass of the remnant of GW170817, $sim$2.7 $M_odot$, implies the remnant could be either a massive, rotating, neutron star, or a black hole. We report Chandra Directors Discretionary Time observations made in 2017 December and 2018 January, and we reanalyze earlier observations from 2017 August and 2017 September, in order to address these unresolved issues. We estimate the X-ray flux from a neutron star remnant and compare that to the measured X-ray flux. If we assume that the spin-down luminosity of any putative neutron star is converted to pulsar wind nebula X-ray emission in the 0.5-8 keV band with an efficiency of $10^{-3}$, for a dipole magnetic field with $3 times 10^{11}$ G < $B$ < $10^{14}$ G, a rising X-ray signal would result and would be brighter than that observed by day 107, we therefore conclude that the remnant of GW170817 is most likely a black hole. Independent of any assumptions of X-ray efficiency, however, if the remnant is a rapidly-rotating, magnetized, neutron star, the total energy in the external shock should rise by a factor $sim$$10^2$ (to $sim$$10^{52}$ erg) after a few years, therefore, Chandra observations over the next year or two that do not show substantial brightening will rule out such a remnant. The same observations can distinguish between two different models for the relativistic outflow, either an angular or radially varying structure.
A large number of binary black holes (BBHs) with longer orbital periods are supposed to exist as progenitors of BBH mergers recently discovered with gravitational wave (GW) detectors. In our previous papers, we proposed to search for such BBHs in triple systems through the radial-velocity modulation of the tertiary orbiting star. If the tertiary is a pulsar, high precision and cadence observations of its arrival time enable an unambiguous characterization of the pulsar -- BBH triples located at several kpc, which are inaccessible with the radial velocity of stars. The present paper shows that such inner BBHs can be identified through the short-term R{o}mer delay modulation, on the order of $10$ msec for our fiducial case, a triple consisting of $20~M_odot$ BBH and $1.4~M_odot$ pulsar with $P_mathrm{in}=10$ days and $P_mathrm{out}=100$ days. If the relativistic time delays are measured as well, one can determine basically all the orbital parameters of the triple. For instance, this method is applicable to inner BBHs of down to $sim 1$ hr orbital periods if the orbital period of the tertiary pulsar is around several days. Inner BBHs with $lesssim 1$ hr orbital period emit the GW detectable by future space-based GW missions including LISA, DECIGO, and BBO, and very short inner BBHs with sub-second orbital period can be even probed by the existing ground-based GW detectors. Therefore, our proposed methodology provides a complementary technique to search for inner BBHs in triples, if exist at all, in the near future.
116 - Chang-Shuo Yan 2015
Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observational evidence for BBHs remains elusive and ambiguous, which is difficult to reconcile with theoretical expectations. In this paper, we show that the distinct optical-to-UV spectrum of Mrk 231 can be well interpreted as emission from accretion flows onto a BBH, with a semimajor axis of ~590AU and an orbital period of ~1.2 year. The flat optical and UV continua are mainly emitted from a circumbinary disk and a mini-disk around the secondary black hole (BH), respectively; and the observed sharp drop off and flux deficit at wavelength lambda ~ 4000-2500 Angstrom is due to a gap (or hole) opened by the secondary BH migrating within the circumbinary disk. If confirmed by future observations, this BBH will provide a unique laboratory to study the interplay between BBHs and accretion flows onto them. Our result also demonstrates a new method to find sub-parsec scale BBHs by searching for deficits in the optical-to-UV continuum among the spectra of quasars.
HR 6819 was recently proposed to be a triple system consisting of an inner B-type giant + black hole binary with an orbital period of 40d and an outer Be tertiary. This interpretation is mainly based on two inferences: that the emission attributed to the outer Be star is stationary, and that the inner star, which is used as mass calibrator for the black hole, is a B-type giant. We re-investigate the properties of HR 6819 by spectral disentangling and an atmosphere analysis of the disentangled spectra to search for a possibly simpler alternative explanation for HR 6819. Disentangling implies that the Be component is not a static tertiary, but rather a component of the binary in the 40-d orbit. The inferred radial velocity amplitudes imply an extreme mass ratio of M_2/M_1 = 15 +/- 3. We infer spectroscopic masses of 0.4$^{+0.3}_{-0.1}$ Msun and 6$^{+5}_{-3}$ Msun for the primary and secondary, which agree well with the dynamical masses for an inclination of i = 32 deg. This indicates that the primary might be a stripped star rather than a B-type giant. Evolutionary modelling suggests that a possible progenitor system would be a tight (P_i ~ 2d) B+B binary system that experienced conservative mass transfer. While the observed nitrogen enrichment of the primary conforms with the predictions of the evolutionary models, we find no indications for the predicted He enrichment. We suggest that HR 6819 is a binary system consisting of a stripped B-type primary and a rapidly-rotating Be star that formed from a previous mass-transfer event. In the framework of this interpretation, HR 6819 does not contain a black hole. Interferometry can distinguish between these two scenarios by providing an independent measurement of the separation between the visible components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا