Charting Lattice Thermal Conductivity of Inorganic Crystals


Abstract in English

Thermal conductivity is a fundamental material property but challenging to predict, with less than 5% out of about $10^5$ synthesized inorganic materials being documented. In this work, we extract the structural chemistry that governs lattice thermal conductivity, by combining graph neural networks and random forest approaches. We show that both mean and variation of unit-cell configurational properties, such as atomic volume and bond length, are the most important features, followed by mass and elemental electronegativity. We chart the structural chemistry of lattice thermal conductivity into extended van-Arkel triangles, and predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database. For the latter, we develop a transfer learning framework extendable for other applications.

Download