Do you want to publish a course? Click here

It has to be cool: on supergiant progenitors of binary black hole mergers from common-envelope evolution

145   0   0.0 ( 0 )
 Added by Jakub Klencki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Common-envelope (CE) evolution in massive binary systems is thought to be one of the most promising channels for the formation of compact binary mergers. In the case of merging binary black holes (BBHs), the essential CE phase takes place at a stage when the first BH is already formed and the companion star expands as a supergiant. We study which BH binaries with supergiant companions will evolve through and potentially survive a CE phase. To this end, we compute envelope binding energies from detailed massive stellar models at different evolutionary stages and metallicities. We make multiple physically extreme choices of assumptions that favor easier CE ejection as well as account for recent advancements in mass transfer stability criteria. We find that even with the most optimistic assumptions, a successful CE ejection in BH (and also NS) binaries is only possible if the donor is a massive convective-envelope giant, a red supergiant (RSG). In other words, pre-CE progenitors of BBH mergers are BH binaries with RSG companions. We find that due to its influence on the radial expansion of massive giants, metallicity has an indirect but a very strong effect on the envelope structure and binding energies of RSGs. Our results suggest that merger rates from population synthesis models could be severely overestimated, especially at low metallicity. Additionally, the lack of observed RSGs with luminosities above log($L/L_{odot}$) = 5.6-5.8, corresponding to stars with $M > 40 M_{odot}$, puts into question the viability of the CE channel for the formation of the most massive BBH mergers. Either such RSGs elude detection due to very short lifetimes, or they do not exist and the CE channel can only produce BBH systems with total mass $< 50 M_{odot}$. We discuss an alternative CE scenario, in which a partial envelope ejection is followed by a phase of possibly long and stable mass transfer.



rate research

Read More

73 - Federico Garcia 2021
We aim to study the progenitor properties and expected rates of the two lowest-mass binary black hole (BH) mergers, GW 151226 and GW 170608, detected within the first two Advanced LIGO-Virgo runs, in the context of the isolated binary-evolution scenario. We use the public MESA code, which we adapted to include BH formation and unstable mass transfer developed during a common-envelope (CE) phase. Using more than 60000 binary simulations, we explore a wide parameter space for initial stellar masses, separations, metallicities, and mass-transfer efficiencies. We obtain the expected distributions for the chirp mass, mass ratio, and merger time delay by accounting for the initial stellar binary distributions. Our simulations show that, while the progenitors we obtain are compatible over the entire range of explored metallicities, they show a strong dependence on the initial masses of the stars, according to stellar winds. All the progenitors follow a similar evolutionary path, starting from binaries with initial separations in the $30-200~R_odot$ range, experiencing a stable mass transfer interaction before the formation of the first BH, and a second unstable mass-transfer episode leading to a CE ejection that occurs either when the secondary star crosses the Hertzsprung gap or when it is burning He in its core. The CE phase plays a fundamental role in the considered low-mass range: only progenitors experiencing such an unstable mass-transfer phase are able to merge in less than a Hubble time. We find integrated merger-rate densities in the range $0.2-5.0~{rm yr}^{-1}~{rm Gpc}^{-3}$ in the local Universe for the highest mass-transfer efficiencies explored. The highest rate densities lead to detection rates of $1.2-3.3~{rm yr}^{-1}$, being compatible with the observed rates. A high CE-efficiency scenario with $alpha_{rm CE}=2.0$ is favored when comparing with observations. ABRIDGED.
As the number of observed merging binary black holes (BHs) grows, accurate models are required to disentangle multiple formation channels. In models with isolated binaries, important uncertainties remain regarding the stability of mass transfer (MT) and common-envelope (CE) evolution. To study some of these uncertainties, we have computed simulations using MESA of a $30M_odot$, low metallicity ($Z_odot/10$) star with a BH companion. We developed a prescription to compute MT rates including possible outflows from outer Lagrangian points, and a method to self-consistently determine the core-envelope boundary in the case of CE evolution. We find that binaries survive a CE only if unstable MT happens after the formation of a deep convective envelope, resulting in a narrow range (0.2 dex) in period for envelope ejection. All cases where interaction is initiated with a radiative envelope have large binding energies ($sim 10^{50}$ erg), and merge during CE even under the assumption that all the internal and recombination energy of the envelope, as well as the energy from an inspiral, is used for ejection. This is independent of core helium ignition for the donor, a condition under which various rapid-population synthesis calculations assume a successful ejection is possible. Moreover, we find that the critical mass ratio for instability is such that for periods between $sim 1-1000$ days merging binary BHs can be formed via stable MT. A large fraction of these systems overflow their L$_2$ equipotential, in which case we find stable MT produces merging binary BHs even under extreme assumptions of mass and angular momentum outflows. Our conclusions are limited to the study of one donor star, but suggest that population synthesis calculations overestimate the formation rate of merging binary BHs produced by CE evolution, and that stable MT could dominate the rate from isolated binaries.
The discovery via gravitational waves of binary black hole systems with total masses greater than $60M_odot$ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving a common envelope binary containing a low metallicity, core helium burning star with mass $sim 80-90M_odot$ and a black hole with mass $sim 30-40M_odot$. For this channel to be viable, the common envelope binary must eject more than half the giant stars mass and reduce its orbital separation by as much as a factor of 80. We discuss issues faced in numerically simulating the common envelope evolution of such systems and present a 3D AMR simulation of the dynamical inspiral of a low-metallicity red supergiant with a massive black hole companion.
Binary systems undergoing unstable Roche Lobe overflow spill gas into their circumbinary environment as their orbits decay toward coalescence. In this paper, we use a suite of hydrodynamic models of coalescing binaries involving an extended donor and a more compact accretor. We focus on the period of unstable Roche Lobe overflow that ends as the accretor plunges within the envelope of the donor at the onset of a common envelope phase. During this stage, mass is removed from the donor and flung into the circumbinary environment. Across a wide range of binary mass ratios, we find that the mass expelled as the separation decreases from the Roche limit to the donors original radius is of the order of 25% of the accretors mass. We study the kinematics of this ejecta and its dependencies on binary properties and find that it assembles into a toroidal circumbinary distribution. These circumbinary tori have approximately constant specific angular momentum due to momentum transport by spiral shocks launched from the orbiting binary. We show that an analytic model with these torus properties captures many of the main features of the azimuthally-averaged profiles of our hydrodynamic simulations. Our results, in particular the simple relationship between accretor mass and expelled mass and its spatial distribution, may be useful in interpreting stellar coalescence transients like luminous red novae, and in initializing hydrodynamic simulations of the subsequent common envelope phase.
The recent gravitational wave measurements have demonstrated the existence of stellar mass black hole binaries. It is essential for our understanding of massive star evolution to identify the contribution of binary evolution to the formation of double black holes. A promising way to progress is investigating the progenitors of double black hole systems and comparing predictions with local massive star samples such as the population in 30 Doradus in the Large Magellanic Cloud (LMC). Methods. To this purpose, we analyse a large grid of detailed binary evolution models at LMC metallicity with initial primary masses between 10 and 40 Msun, and identify which model systems potentially evolve into a binary consisting of a black hole and a massive main sequence star. We then derive the observable properties of such systems, as well as peculiarities of the OB star component. We find that about 3% of the LMC late O and early B stars in binaries are expected to possess a black hole companion, when assuming stars with a final helium core mass above 6.6 M to form black holes. While the vast majority of them may be X-ray quiet, our models suggest that these may be identified in spectroscopic binaries, either by large amplitude radial velocity variations ( > 50 km s ) and simultaneous nitrogen surface enrichment, or through a moderate radial velocity ( > 10 km/s ) and simultaneously rapid rotation of the OB star. The predicted mass ratios are such that main sequence companions could be excluded in most cases. A comparison to the observed OB+WR binaries in the LMC, Be/X-ray binaries, and known massive BH binaries supports our conclusion. We expect spectroscopic observations to be able to test key assumptions in our models, with important implications for massive star evolution in general, and for the formation of double-black hole mergers in particular.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا