Do you want to publish a course? Click here

Alpha clustering and alpha-capture reaction rate from ab initio symmetry-adapted description of $^{20}$Ne

69   0   0.0 ( 0 )
 Added by Kristina D. Launey
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new framework for studying clustering and for calculating alpha partial widths using ab initio wave functions. We demonstrate the formalism for $^{20}$Ne, by calculating the overlap between the $^{16}$O$+alpha$ cluster configuration and states in $^{20}$Ne computed in the ab initio symmetry-adapted no-core shell model. We present spectroscopic amplitudes and spectroscopic factors, and compare those to no-core symplectic shell-model results in larger model spaces, to gain insight into the underlying physics that drives alpha-clustering. Specifically, we report on the alpha partial width of the lowest $1^-$ resonance in $^{20}$Ne, which is found to be in good agreement with experiment. We also present first no-core shell-model estimates for asymptotic normalization coefficients for the ground state, as well as for the first excited $4^{+}$ state in $^{20}$Ne that lies in a close proximity to the $^{16}$O$+alpha$ threshold. This outcome highlights the importance of correlations for developing cluster structures and for describing alpha widths. The widths can then be used to calculate alpha-capture reaction rates for narrow resonances of interest to astrophysics. We explore the reaction rate for the alpha-capture reaction $^{16}$O$(alpha,gamma)^{20}$Ne at astrophysically relevant temperatures and determine its impact on simulated X-ray burst abundances.



rate research

Read More

Direct evidence of the $alpha$-cluster manifestation in bound states has not been obtained yet, although a number of experimental studies were carried out to extract the information of the clustering. In particular in conventional analyses of $alpha$-transfer reactions, there exist a few significant problems on reaction models, which are insufficient to qualitatively discuss the cluster structure. We aim to verify the development of the $alpha$-cluster structure from observables. As the first application, we plan to extract the spatial information of the cluster structure of the $^{20}$Ne nucleus in its ground state through the cross section of the $alpha$-transfer reaction $^{16}$O($^6$Li,~$d$)$^{20}$Ne. For the analysis of the transfer reaction, we work with the coupled-channel Born approximation (CCBA) approach, in which the breakup effect of $^6$Li is explicitly taken into account by means of the continuum-discretized coupled-channel method based on the three-body $alpha + d + {}^{16}$O model. The two methods are adopted to calculate the overlap function between $^{20}$Ne and $alpha + {}^{16}$O; one is the microscopic cluster model (MCM) with the generator coordinate method, and the other is the phenomenological two-body potential model (PM). We show that the CCBA calculation with the MCM wave function gives a significant improvement of the theoretical result on the angular distribution of the transfer cross section, which is consistent with the experimental data. Employing the PM, it is discussed which region of the cluster wave function is probed on the transfer cross section. It is found that the surface region of the cluster wave function is sensitive to the cross section. The present work is situated as the first step in obtaining important information to systematically investigate the cluster structure.
The competing $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reactions control the production of neutrons for the weak $s$-process in massive and AGB stars. In both systems, the ratio between the corresponding reaction rates strongly impacts the total neutron budget and strongly influences the final nucleosynthesis. The $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reaction rates was re-evaluated by using newly available information on $^{26}$Mg given by various recent experimental studies. Evaluations of The evaluated $^{22}$Ne($alpha,gamma$)$^{26}$Mg reaction rate remains substantially similar to that of Longland {it et al.} but, including recent results from Texas A&M, the $^{22}$Ne($alpha,n$)$^{25}$Mg reaction rate is lower at a range of astrophysically important temperatures. Stellar models computed with NEWTON and MESA predict decreased production of the weak branch $s$-process due to the decreased efficiency of $^{22}$Ne as a neutron source. Using the new reaction rates in the MESA model results in $^{96}$Zr/$^{94}$Zr and $^{135}$Ba/$^{136}$Ba ratios in much better agreement with the measured ratios from presolar SiC grains.
The $^{22}$Ne($alpha$,$gamma$)$^{26}$Mg and $^{22}$Ne($alpha$,n)$^{25}$Mg reactions play an important role in astrophysics because they have significant influence on the neutron flux during the weak branch of the s-process. We constrain the astrophysical rates for these reactions by measuring partial $alpha$-widths of resonances in $^{26}$Mg located in the Gamow window for the $^{22}$Ne+$alpha$ capture. These resonances were populated using $^{22}$Ne($^6$Li,d)$^{26}$Mg and $^{22}$Ne($^7$Li,t)$^{26}$Mg reactions at energies near the Coulomb barrier. At these low energies $alpha$-transfer reactions favor population of low spin states and the extracted partial $alpha$-widths for the observed resonances exhibit only minor dependence on the model parameters. The astrophysical rates for both the $^{22}$Ne($alpha$,$gamma$)$^{26}$Mg and the $^{22}$Ne($alpha$,n)$^{25}$Mg reactions are shown to be significantly different than the previously suggested values.
At the long-wavelength approximation, $E1$ transitions are forbidden between isospin-zero states. Hence $E1$ radiative capture is strongly hindered in reactions involving $N = Z$ nuclei but the $E1$ astrophysical $S$ factor may remain comparable to, or larger than, the $E2$ one. Theoretical expressions of the isoscalar and isovector contributions to $E1$ capture are analyzed in microscopic and three-body approaches in the context of the $alpha(d,gamma)^6$Li reaction. The lowest non-vanishing terms of the operators are derived and the dominant contributions to matrix elements are discussed. The astrophysical $S$ factor computed with some of these contributions in a three-body $alpha+n+p$ model is in agreement with the recent low-energy experimental data of the LUNA collaboration. This confirms that a correct treatment of the isovector $E1$ transitions involving small isospin-one admixtures in the wave functions should be able to provide an explanation of the data without adjustable parameter. The exact-masses prescription which is often used to avoid the disappearance of the $E1$ matrix element in potential models is not founded at the microscopic level and should not be used for such reactions. The importance of capture components from an initial $S$ scattering wave is also discussed.
Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance in 12C.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا