Do you want to publish a course? Click here

Exploring order parameters and dynamic processes in disordered systems via variational autoencoders

88   0   0.0 ( 0 )
 Added by Maxim Ziatdinov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We suggest and implement an approach for the bottom-up description of systems undergoing large-scale structural changes and chemical transformations from dynamic atomically resolved imaging data, where only partial or uncertain data on atomic positions are available. This approach is predicated on the synergy of two concepts, the parsimony of physical descriptors and general rotational invariance of non-crystalline solids, and is implemented using a rotationally-invariant extension of the variational autoencoder applied to semantically segmented atom-resolved data seeking the most effective reduced representation for the system that still contains the maximum amount of original information. This approach allowed us to explore the dynamic evolution of electron beam-induced processes in a silicon-doped graphene system, but it can be also applied for a much broader range of atomic-scale and mesoscopic phenomena to introduce the bottom-up order parameters and explore their dynamics with time and in response to external stimuli.



rate research

Read More

Recent advances in scanning tunneling and transmission electron microscopies (STM and STEM) have allowed routine generation of large volumes of imaging data containing information on the structure and functionality of materials. The experimental data sets contain signatures of long-range phenomena such as physical order parameter fields, polarization and strain gradients in STEM, or standing electronic waves and carrier-mediated exchange interactions in STM, all superimposed onto scanning system distortions and gradual changes of contrast due to drift and/or mis-tilt effects. Correspondingly, while the human eye can readily identify certain patterns in the images such as lattice periodicities, repeating structural elements, or microstructures, their automatic extraction and classification are highly non-trivial and universal pathways to accomplish such analyses are absent. We pose that the most distinctive elements of the patterns observed in STM and (S)TEM images are similarity and (almost-) periodicity, behaviors stemming directly from the parsimony of elementary atomic structures, superimposed on the gradual changes reflective of order parameter distributions. However, the discovery of these elements via global Fourier methods is non-trivial due to variability and lack of ideal discrete translation symmetry. To address this problem, we develop shift-invariant variational autoencoders (shift-VAE) that allow disentangling characteristic repeating features in the images, their variations, and shifts inevitable for random sampling of image space. Shift-VAEs balance the uncertainty in the position of the object of interest with the uncertainty in shape reconstruction. This approach is illustrated for model 1D data, and further extended to synthetic and experimental STM and STEM 2D data.
148 - Nina Miolane , Susan Holmes 2019
Manifold-valued data naturally arises in medical imaging. In cognitive neuroscience, for instance, brain connectomes base the analysis of coactivation patterns between different brain regions on the analysis of the correlations of their functional Magnetic Resonance Imaging (fMRI) time series - an object thus constrained by construction to belong to the manifold of symmetric positive definite matrices. One of the challenges that naturally arises consists of finding a lower-dimensional subspace for representing such manifold-valued data. Traditional techniques, like principal component analysis, are ill-adapted to tackle non-Euclidean spaces and may fail to achieve a lower-dimensional representation of the data - thus potentially pointing to the absence of lower-dimensional representation of the data. However, these techniques are restricted in that: (i) they do not leverage the assumption that the connectomes belong on a pre-specified manifold, therefore discarding information; (ii) they can only fit a linear subspace to the data. In this paper, we are interested in variants to learn potentially highly curved submanifolds of manifold-valued data. Motivated by the brain connectomes example, we investigate a latent variable generative model, which has the added benefit of providing us with uncertainty estimates - a crucial quantity in the medical applications we are considering. While latent variable models have been proposed to learn linear and nonlinear spaces for Euclidean data, or geodesic subspaces for manifold data, no intrinsic latent variable model exists to learn nongeodesic subspaces for manifold data. This paper fills this gap and formulates a Riemannian variational autoencoder with an intrinsic generative model of manifold-valued data. We evaluate its performances on synthetic and real datasets by introducing the formalism of weighted Riemannian submanifolds.
76 - Weiwei Li , Qian He , Le Wang 2017
Controlling functionalities, such as magnetism or ferroelectricity, by means of oxygen vacancies (VO) is a key issue for the future development of transition metal oxides. Progress in this field is currently addressed through VO variations and their impact on mainly one order parameter. Here we reveal a new mechanism for tuning both magnetism and ferroelectricity simultaneously by using VO. Combined experimental and density-functional theory studies of Eu0.5Ba0.5TiO3-{delta}, we demonstrate that oxygen vacancies create Ti3+ 3d1 defect states, mediating the ferromagnetic coupling between the localized Eu 4f7 spins, and increase an off-center displacement of Ti ions, enhancing the ferroelectric Curie temperature. The dual function of Ti sites also promises a magnetoelectric coupling in the Eu0.5Ba0.5TiO3-{delta}.
A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties.
Deep learning has enabled algorithms to generate realistic images. However, accurately predicting long video sequences requires understanding long-term dependencies and remains an open challenge. While existing video prediction models succeed at generating sharp images, they tend to fail at accurately predicting far into the future. We introduce the Clockwork VAE (CW-VAE), a video prediction model that leverages a hierarchy of latent sequences, where higher levels tick at slower intervals. We demonstrate the benefits of both hierarchical latents and temporal abstraction on 4 diverse video prediction datasets with sequences of up to 1000 frames, where CW-VAE outperforms top video prediction models. Additionally, we propose a Minecraft benchmark for long-term video prediction. We conduct several experiments to gain insights into CW-VAE and confirm that slower levels learn to represent objects that change more slowly in the video, and faster levels learn to represent faster objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا