Investigating phase transitions from local crystallographic analysis based on machine learning of atomic environments


Abstract in English

Traditionally, phase transitions are explored using a combination of macroscopic functional characterization and scattering techniques, providing insight into average properties and symmetries of the lattice but local atomic level mechanisms during phase transitions generally remain unknown. Here we explore the mechanisms of a phase transition between the trigonal prismatic and distorted octahedral phases of layered chalogenides in the MoS2 ReS2 system from the observations of local degrees of freedom, namely atomic positions by Scanning Transmission Electron Microscopy (STEM). We employ local crystallographic analysis based on machine learning of atomic environments to build a picture of the transition from the atomic level up and determine local and global variables controlling the local symmetry breaking. In particular, we argue that the dependence of the average symmetry breaking distortion amplitude on global and local concentration can be used to separate local chemical and global electronic effects on transition. This approach allows exploring atomic mechanisms beyond the traditional macroscopic descriptions, utilizing the imaging of compositional fluctuations in solids to explore phase transitions over a range of realized and observed local stoichiometries and atomic configurations.

Download