No Arabic abstract
We report magnetization, heat capacity, thermal expansion, and magnetostriction measurements down to millikelvin temperatures on the triangular antiferromagnet YbMgGaO$_4$. Our data exclude the formation of the distinct $frac13$ plateau phase observed in other triangular antiferromagnets, but reveal plateaulike features in second derivatives of the free energy, magnetic susceptibility and specific heat, at $mu_0H$ = 1.0 - 2.5 T for $Hparallel{}c$ and 2 - 5 T for $Hperp{}c$. Using Monte-Carlo simulations of a realistic spin Hamiltonian, we ascribe these features to nonmonotonic changes in the magnetization and the $frac12$ plateau that is smeared out by the random distribution of exchange couplings in YbMgGaO$_4$.
Single-crystal x-ray diffraction, density-functional band-structure calculations, and muon spin relaxation ($mu$SR) are used to probe pressure evolution of the triangular spin-liquid candidate YbMgGaO$_4$. The rhombohedral crystal structure is retained up to at least 10 GPa and shows a nearly uniform compression along both in-plane and out-of-plane directions, whereas local distortions caused by the random distribution of Mg$^{2+}$ and Ga$^{3+}$ remain mostly unchanged. The $mu$SR data confirm persistent spin dynamics up to 2.6 GPa and down to 250 mK with no change in the muon relaxation rate. Longitudinal-field $mu$SR reveals power-law behavior of the spin-spin autocorrelation function, both at ambient pressure and upon compression.
We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb$^{3+}$ crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO$_4$. Three CEF excitations from the ground-state Kramers doublet are centered at the energies $hbar omega$ = 39, 61, and 97,meV in agreement with the effective mbox{spin-1/2} $g$-factors and experimental heat capacity, but reveal sizable broadening. We argue that this broadening originates from the site mixing between Mg$^{2+}$ and Ga$^{3+}$ giving rise to a distribution of Yb--O distances and orientations and, thus, of CEF parameters that account for the peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the effective spin-1/2 $g$-factors and explains the unprecedented broadening of low-energy magnetic excitations in the fully polarized ferromagnetic phase of YbMgGaO$_4$, although a distribution of magnetic couplings due to the Mg/Ga disorder may be important as well.
Motivated by a recent inelastic neutron scattering experiment on $mathrm{YbMgGaO}_4$ cite{William2019}, we reinvestigate the homogeneous spin model on the triangular lattice. Using the cluster mean-field theory, we study the phase diagram and the magnetic-field-induced phase transition. We find that the phase boundary between the stripe state and the $120^{circ}$ antiferromagnetic state is broadened by the magnetic field, leading to a field-induced phase transition. This phase transition is suppressed by the next-nearest neighbor exchange interaction $J_2/J_1$ and vanishes as $J_2/J_1>0.13$. We find a parameter space at $J_2/J_1=0.1$, in which the field-induce transition can be achieved and the deviation of theoretical spin excitation energies from experimental data is only $5.4%$. Our results imply that an effective homogeneous spin model still works in $mathrm{YbMgGaO}_4$.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
Muon spin relaxation and rotation ($mu$SR) experiments on single crystals of the structurally perfect triangular antiferromagnet YbMgGaO$_4$ indicate the absence of both static long-range magnetic order and spin freezing down to 0.048 K in zero field. Below 0.4 K, the $mu^{+}$ spin relaxation rates, which are proportional to the dynamic correlation function of the Yb$^{3+}$ spins,exhibit temperature-independent plateaus. Same behavior is revealed by temperature-independent local susceptibilities extracted from the Knight shifts of the $mu^{+}$ spin rotation frequencies under a transverse field of 20 Oe. All these $mu$SR results unequivocally support the formation of a gapless U(1) quantum spin liquid ground state in the triangular antiferromagnet YbMgGaO$_4$.