We study non-minimal Coleman-Weinberg inflation in the Palatini formulation of gravity in the presence of an $R^2$ term. The Planck scale is dynamically generated by the vacuum expectation value of the inflaton via its non-minimal coupling to the curvature scalar $R$. We show that the addition of the $R^2$ term in Palatini gravity makes non-minimal Coleman-Weinberg inflation again compatible with observational data.
We present two scale invariant models of inflation in which the addition of quadratic in curvature terms in the usual Einstein-Hilbert action, in the context of Palatini formulation of gravity, manages to reduce the value of the tensor-to-scalar ratio. In both models the Planck scale is dynamically generated via the vacuum expectation value of the scalar fields.
Ultraviolet completion of the standard model plus gravity at and beyond the Planck scale is a daunting problem to which no generally accepted solution exists. Principal obstacles include (a) lack of data at the Planck scale (b) nonrenormalizability of gravity and (c) unitarity problem. Here we make a simple observation that, if one treats all Planck scale operators of equal canonical dimension democratically, one can tame some of the undesirable features of these models. With a reasonable amount of fine tuning one can satisfy slow roll conditions required in viable inflationary models. That remains true even when the number of such operators becomes very large.
We study inflation in Weyl gravity. The original Weyl quadratic gravity, based on Weyl conformal geometry, is a theory invariant under Weyl symmetry of (gauged) local scale transformations. In this theory Planck scale ($M$) emerges as the scale where this symmetry is broken spontaneously by a geometric Stueckelberg mechanism, to Einstein-Proca action for the Weyl photon (of mass near $M$). With this action as a low energy broken phase of Weyl gravity, century-old criticisms of the latter (due to non-metricity) are avoided. In this context, inflation with field values above $M$ is natural, since this is just a phase transition scale from Weyl gravity (geometry) to Einstein gravity (Riemannian geometry), where the massive Weyl photon decouples. We show that inflation in Weyl gravity coupled to a scalar field has results close to those in Starobinsky model (recovered for vanishing non-minimal coupling), with a mildly smaller tensor-to-scalar ratio ($r$). Weyl gravity predicts a specific, narrow range $0.00257 leq rleq 0.00303$, for a spectral index $n_s$ within experimental bounds at $68%$CL and e-folds number $N=60$. This range of values will soon be reached by CMB experiments and provides a test of Weyl gravity. Unlike in the Starobinsky model, the prediction for $(r, n_s)$ is not affected by unknown higher dimensional curvature operators (suppressed by some large mass scale) since these are forbidden by the Weyl gauge symmetry.
The predictions of standard Higgs inflation in the framework of the metric formalism yield a tensor-to-scalar ratio $r sim 10^{-3}$ which lies well within the expected accuracy of near-future experiments $ sim 10^{-4}$. When the Palatini formalism is employed, the predicted values of $r$ get highly-suppressed $rsim 10^{-12}$ and consequently a possible non-detection of primordial tensor fluctuations will rule out only the metric variant of the model. On the other hand, the extremely small values predicted for $r$ by the Palatini approach constitute contact with observations a hopeless task for the foreseeable future. In this work, we propose a way to remedy this issue by extending the action with the inclusion of a generalized non-minimal derivative coupling term between the inflaton and the Einstein tensor of the form $m^{-2}(phi) G_{mu u} abla^{mu}phi abla^{ u}phi$. We find that with such a modification, the Palatini predictions can become comparable with the ones obtained in the metric formalism, thus providing ample room for the model to be in contact with observations in the near future.
With a scalar field non-minimally coupled to curvature, the underlying geometry and variational principle of gravity - metric or Palatini - becomes important and makes a difference, as the field dynamics and observational predictions generally depend on this choice. In the present paper we describe a classification principle which encompasses both metric and Palatini models of inflation, employing the fact that inflationary observables can be neatly expressed in terms of certain quantities which remain invariant under conformal transformations and scalar field redefinitions. This allows us to elucidate the specific conditions when a model yields equivalent phenomenology in the metric and Palatini formalisms, and also to outline a method how to systematically construct different models in both formulations that produce the same observables.
Ioannis D. Gialamas
,Alexandros Karam
,Antonio Racioppi
.
(2020)
.
"Dynamically induced Planck scale and inflation in the Palatini formulation"
.
Alexandros Karam Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا