Do you want to publish a course? Click here

Graph-Stega: Semantic Controllable Steganographic Text Generation Guided by Knowledge Graph

210   0   0.0 ( 0 )
 Added by Zhongliang Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Most of the existing text generative steganographic methods are based on coding the conditional probability distribution of each word during the generation process, and then selecting specific words according to the secret information, so as to achieve information hiding. Such methods have their limitations which may bring potential security risks. Firstly, with the increase of embedding rate, these models will choose words with lower conditional probability, which will reduce the quality of the generated steganographic texts; secondly, they can not control the semantic expression of the final generated steganographic text. This paper proposes a new text generative steganography method which is quietly different from the existing models. We use a Knowledge Graph (KG) to guide the generation of steganographic sentences. On the one hand, we hide the secret information by coding the path in the knowledge graph, but not the conditional probability of each generated word; on the other hand, we can control the semantic expression of the generated steganographic text to a certain extent. The experimental results show that the proposed model can guarantee both the quality of the generated text and its semantic expression, which is a supplement and improvement to the current text generation steganography.



rate research

Read More

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.
564 - Luoqiu Li , Zhen Bi , Hongbin Ye 2021
Recent years have witnessed the prosperity of legal artificial intelligence with the development of technologies. In this paper, we propose a novel legal application of legal provision prediction (LPP), which aims to predict the related legal provisions of affairs. We formulate this task as a challenging knowledge graph completion problem, which requires not only text understanding but also graph reasoning. To this end, we propose a novel text-guided graph reasoning approach. We collect amounts of real-world legal provision data from the Guangdong government service website and construct a legal dataset called LegalLPP. Extensive experimental results on the dataset show that our approach achieves better performance compared with baselines. The code and dataset are available in url{https://github.com/zxlzr/LegalPP} for reproducibility.
133 - Pei Ke , Haozhe Ji , Yu Ran 2021
Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pre-training tasks to explicitly model graph-text alignments. To tackle these problems, we propose a graph-text joint representation learning model called JointGT. During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer to preserve the graph structure. Furthermore, we propose three new pre-training tasks to explicitly enhance the graph-text alignment including respective text / graph reconstruction, and graph-text alignment in the embedding space via Optimal Transport. Experiments show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.
This paper studies how to automatically generate a natural language text that describes the facts in knowledge graph (KG). Considering the few-shot setting, we leverage the excellent capacities of pretrained language models (PLMs) in language understanding and generation. We make three major technical contributions, namely representation alignment for bridging the semantic gap between KG encodings and PLMs, relation-biased KG linearization for deriving better input representations, and multi-task learning for learning the correspondence between KG and text. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our model on KG-to-text generation task. In particular, our model outperforms all comparison methods on both fully-supervised and few-shot settings. Our code and datasets are available at https://github.com/RUCAIBox/Few-Shot-KG2Text.
Knowledge Graph (KG) alignment is to discover the mappings (i.e., equivalent entities, relations, and others) between two KGs. The existing methods can be divided into the embedding-based models, and the conventional reasoning and lexical matching based systems. The former compute the similarity of entities via their cross-KG embeddings, but they usually rely on an ideal supervised learning setting for good performance and lack appropriate reasoning to avoid logically wrong mappings; while the latter address the reasoning issue but are poor at utilizing the KG graph structures and the entity contexts. In this study, we aim at combining the above two solutions and thus propose an iterative framework named PRASE which is based on probabilistic reasoning and semantic embedding. It learns the KG embeddings via entity mappings from a probabilistic reasoning system named PARIS, and feeds the resultant entity mappings and embeddings back into PARIS for augmentation. The PRASE framework is compatible with different embedding-based models, and our experiments on multiple datasets have demonstrated its state-of-the-art performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا