Do you want to publish a course? Click here

Accelerating CFD simulation with high order finite difference method on curvilinear coordinates for modern GPU clusters

390   0   0.0 ( 0 )
 Added by Chuangchao Ye
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A high fidelity flow simulation for complex geometries for high Reynolds number ($Re$) flow is still very challenging, which requires more powerful computational capability of HPC system. However, the development of HPC with traditional CPU architecture suffers bottlenecks due to its high power consumption and technical difficulties. Heterogeneous architecture computation is raised to be a promising solution of difficulties of HPC development. GPU accelerating technology has been utilized in low order scheme CFD solvers on structured grid and high order scheme solvers on unstructured meshes. The high order finite difference methods on structured grid possess many advantages, e.g. high efficiency, robustness and low storage, however, the strong dependence among points for a high order finite difference scheme still limits its application on GPU platform. In present work, we propose a set of hardware-aware technology to optimize the efficiency of data transfer between CPU and GPU, and efficiency of communication between GPUs. An in-house multi-block structured CFD solver with high order finite difference methods on curvilinear coordinates is ported onto GPU platform, and obtain satisfying performance with speedup maximum around 2000x over a single CPU core. This work provides efficient solution to apply GPU computing in CFD simulation with certain high order finite difference methods on current GPU heterogeneous computers. The test shows that significant accelerating effects can been achieved for different GPUs.



rate research

Read More

We develop a fourth order accurate finite difference method for the three dimensional elastic wave equation in isotropic media with the piecewise smooth material property. In our model, the material property can be discontinuous at curved interfaces. The governing equations are discretized in second order form on curvilinear meshes by using a fourth order finite difference operator satisfying a summation-by-parts property. The method is energy stable and high order accurate. The highlight is that mesh sizes can be chosen according to the velocity structure of the material so that computational efficiency is improved. At the mesh refinement interfaces with hanging nodes, physical interface conditions are imposed by using ghost points and interpolation. With a fourth order predictor-corrector time integrator, the fully discrete scheme is energy conserving. Numerical experiments are presented to verify the fourth order convergence rate and the energy conserving property.
We present a numerical method for the solution of linear magnetostatic problems in domains with a symmetry direction, including axial and translational symmetry. The approach uses a Fourier series decomposition of the vector potential formulation along the symmetry direction and covers both, zeroth (non-oscillatory) and non-zero (oscillatory) harmonics. For the latter it is possible to eliminate one component of the vector potential resulting in a fully transverse vector potential orthogonal to the transverse magnetic field. In addition to the Poisson-like equation for the longitudinal component of the non-oscillatory problem, a general curl-curl Helmholtz equation results for the transverse problem covering both, non-oscillatory and oscillatory case. The derivation is performed in the covariant formalism for curvilinear coordinates with a tensorial permeability and symmetry restrictions on metric and permeability tensor. The resulting variational forms are treated by the usual nodal finite element method for the longitudinal problem and by a two-dimensional edge element method for the transverse problem. The numerical solution can be computed independently for each harmonic which is favourable with regard to memory usage and parallelisation.
We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates $343$ million grid points per second on a Tesla K40t GPU, achieving a $3.6 times$ speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of $168$ million updates per second.
Mesh-free methods have significant potential for simulations in complex geometries, as the time consuming process of mesh-generation is avoided. Smoothed Particle Hydrodynamics (SPH) is the most widely used mesh-free method, but suffers from a lack of consistency. High order, consistent, and local (using compact computational stencils) mesh-free methods are particularly desirable. Here we present a novel framework for generating local high order difference operators for arbitrary node distributions, referred to as the Local Anisotropic Basis Function Method (LABFM). Weights are constructed from linear sums of anisotropic basis functions (ABFs), chosen to ensure exact reproduction of polynomial fields up to a given order. The ABFs are based on a fundamental Radial Basis Function (RBF), and the choice of fundamental RBF has small effect on accuracy, but influences stability. LABFM is able to generate high order difference operators with compact computational stencils (4th order with 25 nodes, 8th order with 60 nodes in two dimensions). At domain boundaries (with incomplete support) LABFM automatically provides one-sided differences of the same order as the internal scheme, up to 4th order. We use the method to solve elliptic, parabolic and mixed hyperbolic-parabolic PDEs, showing up to 8th order convergence. The inclusion of hyperviscosity is straightforward, and can effectively provide stability when solving hyperbolic problems. LABFM is a promising new mesh-free method for the numerical solution of PDEs in complex geometries. The method is highly scalable, and for Eulerian schemes, the computational efficiency is competitive with RBF-FD for a given accuracy. A particularly attractive feature is that in the low order limit, LABFM collapses to SPH, and there is potential for Arbitrary Lagrangian-Eulerian schemes with natural adaptivity of resolution and accuracy.
High-efficient direct numerical methods are currently in demand for optimization procedures in the fields of both conventional diffractive and metasurface optics. With a view of extending the scope of application of the previously proposed Generalized Source Method in the curvilinear coordinates, which has theoretical $Oleft(Nlog Nright)$ asymptotic numerical complexity, a new method formulation is developed for gratings with sharp edges. It is shown that corrugation corners can be treated as effective medium interfaces within the rationale of the method. Moreover, the given formulation is demonstrated to allow for application of the same derivation as one used in classical electrodynamics to derive the interface conditions. This yields continuous combinations of the fields and metric tensor components, which can be directly Fourier factorized. Together with an efficient algorithm the new formulation is demonstrated to substantially increase the computation accuracy for given computer resources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا