Do you want to publish a course? Click here

Inference offers a metric to constrain dynamical models of neutrino flavor transformation

105   0   0.0 ( 0 )
 Added by Eve Armstrong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The multi-messenger astrophysics of compact objects presents a vast range of environments where neutrino flavor transformation may occur and may be important for nucleosynthesis, dynamics, and a detected neutrino signal. Development of efficient techniques for surveying flavor evolution solution spaces in these diverse environments, which augment and complement existing sophisticated computational tools, could leverage progress in this field. To this end we continue our exploration of statistical data assimilation (SDA) to identify solutions to a small-scale model of neutrino flavor transformation. SDA is a machine learning (ML) formula wherein a dynamical model is assumed to generate any measured quantities. Specifically, we use an optimization formulation of SDA wherein a cost function is extremized via the variational method. Regions of state space in which the extremization identifies the global minimum of the cost function will correspond to parameter regimes in which a model solution can exist. Our example study seeks to infer the flavor transformation histories of two mono-energetic neutrino beams coherently interacting with each other and with a matter background. We require that the solution be consistent with measured neutrino flavor fluxes at the point of detection, and with constraints placed upon the flavor content at various locations along their trajectories, such as the point of emission, and the locations of the Mikheyev-Smirnov-Wolfenstein (MSW) resonances. We show how the procedure efficiently identifies solution regimes and rules out regimes where solutions are infeasible. Overall, results intimate the promise of this variational annealing methodology to efficiently probe an array of fundamental questions that traditional numerical simulation codes render difficult to access.



rate research

Read More

We assess the utility of an optimization-based data assimilation (D.A.) technique for treating the problem of nonlinear neutrino flavor transformation in core collapse supernovae. D.A. uses measurements obtained from a physical system to estimate the state variable evolution and parameter values of the associated model. Formulated as an optimization procedure, D.A. can offer an integration-blind approach to predicting model evolution, which offers an advantage for models that thwart solution via traditional numerical integration techniques. Further, D.A. performs most optimally for models whose equations of motion are nonlinearly coupled. In this exploratory work, we consider a simple steady-state model with two mono-energetic neutrino beams coherently interacting with each other and a background medium. As this model can be solved via numerical integration, we have an independent consistency check for D.A. solutions. We find that the procedure can capture key features of flavor evolution over the entire trajectory, even given measurements of neutrino flavor only at the endpoint, and with an assumed known initial flavor distribution. Further, the procedure permits an examination of the sensitivity of flavor evolution to estimates of unknown model parameters, locates degeneracies in parameter space, and can identify the specific measurements required to break those degeneracies.
Neutrino-neutrino refraction dominates the flavor evolution in core-collapse supernovae, neutron-star mergers, and the early universe. Ordinary neutrino flavor conversion develops on timescales determined by the vacuum oscillation frequency. However, when the neutrino density is large enough, collective flavor conversion may arise because of pairwise neutrino scattering. Pairwise conversion is deemed to be fast as it is expected to occur on timescales that depend on the neutrino-neutrino interaction energy (i.e., on the neutrino number density) and is regulated by the angular distributions of electron neutrinos and antineutrinos. The enigmatic phenomenon of fast pairwise conversion has been overlooked for a long time. However, because of the fast conversion rate, pairwise conversion may possibly occur in the proximity of the neutrino decoupling region with yet to be understood implications for the hydrodynamics of astrophysical sources and the synthesis of the heavy elements. We review the physics of this fascinating phenomenon and its implications for neutrino-dense sources.
We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein (MSW) resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early universe. We find incomplete destruction of lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the non-zero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ~ 1 eV. This could result in better light element probes of (constraints on) these particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا