No Arabic abstract
Innovative applications based on two-dimensional solids require cost-effective fabrication processes resulting in large areas of high quality materials. Chemical vapour deposition is among the most promising methods to fulfill these requirements. However, for 2D materials prepared in this way it is generally assumed that they are of inferior quality in comparison to the exfoliated 2D materials commonly used in basic research. In this work we challenge this assumption and aim to quantify the differences in quality for the prototypical transition metal dichalcogenide MoS$_2$. To this end single layers of MoS$_2$ prepared by different techniques (exfoliation, grown by different chemical vapor deposition methods, transfer techniques, and as vertical heterostructure with graphene) are studied by Raman and photoluminescence spectroscopy, complemented by atomic force microscopy. We demonstrate that as-prepared MoS$_2$, directly grown on SiO$_2$, differs from exfoliated MoS$_2$ in terms of higher photoluminescence, lower electron concentration, and increased strain. As soon as a water film is intercalated (e.g., by transfer) underneath the grown MoS$_2$, in particular the (opto-)electronic properties become practically identical to those of exfoliated MoS$_2$. A comparison of the two most common precursors shows that the growth with MoO$_3$ causes greater strain and/or defect density deviations than growth with ammonium heptamolybdate. As part of a heterostructure directly grown MoS$_2$ interacts much stronger with the substrate, and in this case an intercalated water film does not lead to the complete decoupling, which is typical for exfoliation or transfer. Our work shows that the supposedly poorer quality of grown 2D transition metal dichalcogenides is indeed a misconception.
Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 {deg}C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms intercalate at this high temperature, and during the deposition process, through defects of the molybdenum disulfide surface such as steps and wrinkles. Post growth atomic force microscopy images reveal that circular flat graphene islands have grown at a high yield. They consist of two graphene layers stacked on top of each other with a total thickness of 0.74 nm. Our results demonstrate direct, simple and high yield growth of graphene/molybdenum disulfide heterostructures, which can be of high importance in future nanoelectronic and optoelectronic applications.
Molybdenum disulfide (MoS2) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial scale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS 2 samples with desired structural properties for applications.
The two-dimensional (2D) semiconductor molybdenum disulfide (MoS2) has attracted widespread attention for its extraordinary electrical, optical, spin and valley related properties. Here, we report on spin polarized tunneling through chemical vapor deposited (CVD) multilayer MoS2 (~7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5 - 2 % has been observed, corresponding to spin polarization of 5 - 10 % in the measured temperature range of 300 - 75 K. First principles calculations for ideal junctions results in a tunnel magnetoresistance up to 8 %, and a spin polarization of 26 %. The detailed measurements at different temperatures and bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomenon that control their performance.
Fabrication of single nickel-nitrogen (NE8) defect centers in diamond by chemical vapor deposition is demonstrated. Under continuous-wave 745 nm laser excitation single defects were induced to emit single photon pulses at 797 nm with a linewidth of 1.5 nm at room temperature. Photon antibunching of single centers was demonstrated using a Hanbury-Brown and Twiss interferometer. Confocal images revealed approximately 10^6 optically active sites/cm^2 in the synthesized films. The fabrication of an NE8 based single photon source in synthetic diamond is important for fiber based quantum cryptography. It can also be used as an ideal point-like source for near-field optical microscopy.
Rhombohedral-stacked few-layer graphene (FLG) has been receiving an ever-increasing attention owing to its peculiar electronic properties that could lead to enticing phenomena such as superconductivity and magnetic ordering. Up to now, experimental studies on such material have been mainly limited by the difficulty in isolating it in thickness exceeding 3 atomic layers with device-compatible size. In this work, rhombohedral graphene with thickness up to 9 layers and areas up to ~50 micrometers square is grown via chemical vapor deposition (CVD) on suspended Cu foils and transferred onto target substrates via etch-free delamination. The domains of rhombohedral FLG are identified by Raman spectroscopy and are found to alternate with domains of Bernal-stacked FLG within the same crystal in a stripe-like configuration. A combined analysis of micro-Raman mapping, atomic force microscopy and optical microscopy indicates that the formation of rhombohedral-stacked FLG is strongly correlated to the copper substrate morphology. Cu step bunching results in bending of FLG and interlayer displacement along preferential crystallographic orientations, as determined experimentally by electron microscopy, thus inducing the stripe-like domains. The growth and transfer of rhombohedral FLG with the reported thickness and size shall facilitate the observation of predicted unconventional physics and ultimately add to its technological relevance.